CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3696-3709.DOI: 10.11949/0438-1157.20241250
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Haifeng ZHANG1(
), Jingyi YAN1, Yuxue YUE2, Zilong ZHANG1, Bolin WANG1(
), Xiaonian LI2(
)
Received:2024-11-05
Revised:2025-02-21
Online:2025-08-13
Published:2025-07-25
Contact:
Bolin WANG, Xiaonian LI
张海丰1(
), 闫静怡1, 岳玉学2, 张子龙1, 王柏林1(
), 李小年2(
)
通讯作者:
王柏林,李小年
作者简介:张海丰(1974—),男,博士,教授,zhfeepu@163.com
基金资助:CLC Number:
Haifeng ZHANG, Jingyi YAN, Yuxue YUE, Zilong ZHANG, Bolin WANG, Xiaonian LI. Investigation of hydroxylation-induced reconstruction on WO3 surface and the modification mechanism of transformer oil[J]. CIESC Journal, 2025, 76(7): 3696-3709.
张海丰, 闫静怡, 岳玉学, 张子龙, 王柏林, 李小年. WO3纳米颗粒定性表面羟基化重构及其改性变压器油机制研究[J]. 化工学报, 2025, 76(7): 3696-3709.
Add to citation manager EndNote|Ris|BibTeX
| Structure | Element | Bader charge/e |
|---|---|---|
| H—Oα | W | +2.640 |
| O | -1.172 | |
| H | +0.604 | |
| W—O—H | W | +2.625 |
| O | -1.363 | |
| H | +0.998 |
Table 1 Bader charge of hydroxylation reconstruction on WO3 NPs surface
| Structure | Element | Bader charge/e |
|---|---|---|
| H—Oα | W | +2.640 |
| O | -1.172 | |
| H | +0.604 | |
| W—O—H | W | +2.625 |
| O | -1.363 | |
| H | +0.998 |
| NFs | BDV at 1%/ kV | BDV at 50%/ kV | BDV at 90%/ kV |
|---|---|---|---|
| MO | 50.49 | 50.52 | 50.55 |
| 1.0WMO | 57.28 | 57.31 | 57.34 |
| 2.5WMO | 65.19 | 65.22 | 65.25 |
| 3.0WMO | 60.29 | 60.33 | 60.36 |
| 5.0WMO | 54.47 | 54.50 | 54.53 |
| 10.0WMO | 45.34 | 45.37 | 45.40 |
Table 2 AC breakdown voltage at different breakdown probabilities of nanofluids
| NFs | BDV at 1%/ kV | BDV at 50%/ kV | BDV at 90%/ kV |
|---|---|---|---|
| MO | 50.49 | 50.52 | 50.55 |
| 1.0WMO | 57.28 | 57.31 | 57.34 |
| 2.5WMO | 65.19 | 65.22 | 65.25 |
| 3.0WMO | 60.29 | 60.33 | 60.36 |
| 5.0WMO | 54.47 | 54.50 | 54.53 |
| 10.0WMO | 45.34 | 45.37 | 45.40 |
| [1] | Yadav A A, Hunge Y M, Kang S W. Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production[J]. Surfaces and Interfaces, 2021, 24: 101075. |
| [2] | 赵金龙, 袁杰, 田逢时, 等. 初始油温对变压器油燃烧特性的影响[J]. 化工学报, 2020, 71(7): 3379-3386. |
| Zhao J L, Yuan J, Tian F S, et al. Effect of initial fuel temperature on burning characteristics of transformer oil[J]. CIESC Journal, 2020, 71(7): 3379-3386. | |
| [3] | Rafiq M, Shafique M, Azam A, et al. Transformer oil-based nanofluid: the application of nanomaterials on thermal, electrical and physicochemical properties of liquid insulation—a review[J]. Ain Shams Engineering Journal, 2021, 12(1): 555-576. |
| [4] | Li J H, Zhang X L, Xu B, et al. Nanofluid research and applications: a review[J]. International Communications in Heat and Mass Transfer, 2021, 127: 105543. |
| [5] | Bhunia M M, Panigrahi K, Das S, et al. Amorphous graphene-transformer oil nanofluids with superior thermal and insulating properties[J]. Carbon, 2018, 139: 1010-1019. |
| [6] | Siddique Z B, Basu S, Basak P. Dielectric behavior of natural ester based mineral oil blend dispersed with TiO2 and ZnO nanoparticles as insulating fluid for transformers[J]. Journal of Molecular Liquids, 2021, 339: 116825. |
| [7] | Aberoumand S, Jafarimoghaddam A. Tungsten (Ⅲ) oxide (WO3)-silver/transformer oil hybrid nanofluid: preparation, stability, thermal conductivity and dielectric strength[J]. Alexandria Engineering Journal, 2018, 57(1): 169-174. |
| [8] | Kadim E J, Ahmad Noorden Z, Adzis Z, et al. Surfactants effects on enhancing electrical performance of nanoparticle-based mineral transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30(4): 1573-1581. |
| [9] | 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16): 25-36. |
| Wang W W, Li S T, Liu W F. Dielectric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 25-36. | |
| [10] | Lv Y Z, Ge Y, Sun Z, et al. Effect of nanoparticle morphology on pre-breakdown and breakdown properties of insulating oil-based nanofluids[J]. Nanomaterials, 2018, 8(7): 476. |
| [11] | Chen B H, Yang J H, Li H X, et al. Electrical properties enhancement of natural ester insulating oil by interfacial interaction between KH550-TiO2 and oil molecules[J]. Surfaces and Interfaces, 2023, 42: 103441. |
| [12] | Warsi A Z, Aziz F, Zulfiqar S, et al. Synthesis, characterization, photocatalysis, and antibacterial study of WO3, MXene and WO3/MXene nanocomposite[J]. Nanomaterials, 2022, 12(4): 713. |
| [13] | 谢远航, 娄永, 邓君, 等. La调控WO3介电常数对摩擦纳米发电机输出的影响[J]. 科学通报, 2024, 69(14): 1957-1966. |
| Xie Y H, Lou Y, Deng J, et al. Effects of La-modulated WO3 dielectric constant on the output of a triboelectric nanogenerator[J]. Chinese Science Bulletin, 2024, 69(14): 1957-1966. | |
| [14] | Sima W X, Shi J, Yang Q, et al. Effects of conductivity and permittivity of nanoparticle on transformer oil insulation performance: experiment and theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 380-390. |
| [15] | Sahai A, Goswami N, Kaushik S D, et al. Cu/Cu2O/CuO nanoparticles: novel synthesis by exploding wire technique and extensive characterization[J]. Applied Surface Science, 2016, 390: 974-983. |
| [16] | Tamura H, Mita K, Tanaka A, et al. Mechanism of hydroxylation of metal oxide surfaces[J]. Journal of Colloid and Interface Science, 2001, 243(1): 202-207. |
| [17] | Avramov P V, Kudin K N, Scuseria G E. Single wall carbon nanotubes density of states: comparison of experiment and theory[J]. Chemical Physics Letters, 2003, 370(5/6): 597-601. |
| [18] | Terohid S A A, Heidari S, Jafari A, et al. Effect of growth time on structural, morphological and electrical properties of tungsten oxide nanowire[J]. Applied Physics A, 2018, 124(8): 567. |
| [19] | Martínez T L M, Muñoz A, Pérez A, et al. The effect of support surface hydroxyls on selective CO methanation with Ru based catalysts[J]. Applied Catalysis A: General, 2022, 641: 118678. |
| [20] | Godbole R, Vedpathak A, Godbole V, et al. Tungsten oxide thin films: detection and trapping of hazardous gases[J]. Materials Research Express, 2017, 4(7): 076401. |
| [21] | Shen X F, Garces L J, Ding Y S, et al. Behavior of H2 chemisorption on Ru/TiO2 surface and its application in evaluation of Ru particle sizes compared with TEM and XRD analyses[J]. Applied Catalysis A: General, 2008, 335(2): 187-195. |
| [22] | Hatel R, Baitoul M. Nanostructured tungsten trioxide (WO3): synthesis, structural and morphological investigations[J]. Journal of Physics: Conference Series, 2019, 1292(1): 012014. |
| [23] | 彭梦琦, 张涛, 李茂胜, 等. 光谱分频水基ZnO纳米流体制备及其热电性能调控[J]. 化工学报, 2023, 74(12): 5027-5037. |
| Peng M Q, Zhang T, Li M S, et al. Study on preparation and thermoelectric regulation performance of water-ZnO nanofluids for spectral-beam splitting[J]. CIESC Journal, 2023, 74(12): 5027-5037. | |
| [24] | Yue T, Han H S, Sun W, et al. Low-pH mediated goethite precipitation and nickel loss in nickel hydrometallurgy[J]. Hydrometallurgy, 2016, 165: 238-243. |
| [25] | 刘娟丽, 吴蓉, 祖一丹, 等. 采用Rietveld精修, 谢乐公式以及Williamson-Hall法分析不同煅烧温度TiO2的晶粒尺寸[J]. 化工管理, 2023(13): 151-155. |
| Liu J L, Wu R, Zu Y D, et al. Crystalline size of TiO2 at calcination temperature with by rietveld ref inement, Debye-Scherrer and Williamson-Hall method[J]. Chemical Engineering Management, 2023(13): 151-155. | |
| [26] | Atahar A, Mafy N N, Rahman M M, et al. Aggregation of urea in water: dynamic light scattering analyses[J]. Journal of Molecular Liquids, 2019, 294: 111612. |
| [27] | Dhanola A, Garg H C. Experimental analysis of the efficacy of vegetable oil-based nanolubricants for improving journal-bearing performance[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(9): 1974-1991. |
| [28] | Chong S K, Dee C F, Rahman S A. Single reactor deposition of silicon/tungsten oxide core-shell heterostructure nanowires with controllable structure and optical properties[J]. RSC Advances, 2015, 5(3): 2346-2353. |
| [29] | Aldrees A, Khan H, Alzahrani A, et al. Synthesis and characterization of tungsten trioxide (WO3) as photocatalyst against wastewater pollutants[J]. Applied Water Science, 2023, 13(7): 156. |
| [30] | Zhang Z L, Zuo F M, Cai T Z, et al. Modification of insulating oils and oil-based titanium dioxide nanofluids for transformers: a review[J]. Physical Chemistry Chemical Physics, 2023, 25(34): 22565-22582. |
| [31] | 梁瑜, 赵彤, 赵斌彬, 等. WO3对Pt/α-Al2O3催化萘深度加氢的促进作用[J]. 化工学报, 2021, 72(11): 5643-5652. |
| Liang Y, Zhao T, Zhao B B, et al. Promotion of WO3 species on Pt/α-Al2O3 for the deep hydrogenation of naphthalene[J]. CIESC Journal, 2021, 72(11): 5643-5652. | |
| [32] | 王龙飞, 张亚平, 郭婉秋, 等. WO3/TiO2-ZrO2脱硝催化剂制备及其NH3活化机理[J]. 化工学报, 2015, 66(10): 3903-3910. |
| Wang L F, Zhang Y P, Guo W Q, et al. Preparation of WO3/TiO2-ZrO2 catalyst for selective catalytic reduction and mechanism of NH3 activation[J]. CIESC Journal, 2015, 66(10): 3903-3910. | |
| [33] | Wang Z J, Zhong R, Lai T, et al. Preparation of UV-curable nano-WO3 coating and its infrared shielding properties[J]. Nanomaterials, 2022, 12(21): 3920. |
| [34] | Plakhova T V, Romanchuk A Y, Butorin S M, et al. Towards the surface hydroxyl species in CeO2 nanoparticles[J]. Nanoscale, 2019, 11(39): 18142-18149. |
| [35] | 张宏亮, 黄宁, 刘鹏, 等. 含水率对环氧浸渍纸低频介电弛豫过程的影响研究[J]. 电工技术学报, 2025, 40(1): 312-324. |
| Zhang H L, Huang N, Liu P, et al. Effect of water content on low frequency dielectric relaxation of epoxy resin impregnated paper[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 312-324. | |
| [36] | 黄青丹, 莫文雄, 宋浩永. 植物油纸绝缘加速热老化特性研究[J]. 电工技术, 2018(2): 72-74, 76. |
| Huang Q D, Mo W X, Song H Y. Study on accelerated thermal aging characteristics of plant oil-paper insulation[J]. Electric Engineering, 2018(2): 72-74, 76. | |
| [37] | Thiviyanathan V A, Ker P J, Leong Y S, et al. Power transformer insulation system: a review on the reactions, fault detection, challenges and future prospects[J]. Alexandria Engineering Journal, 2022, 61(10): 7697-7713. |
| [38] | Tuok L P, Elkady M, Zkria A, et al. Experimental investigation of copper oxide nanofluids for enhanced oil recovery in the presence of cationic surfactant using a microfluidic model[J]. Chemical Engineering Journal, 2024, 488: 151011. |
| [39] | 缪金, 董明, 吴雪舟, 等. 纳米改性变压器油研究进展[J]. 中国电机工程学报, 2013, 33(9): 146-154. |
| Miao J, Dong M, Wu X Z, et al. Reviews on transformer oil-based nanofluids[J]. Proceedings of the CSEE, 2013, 33(9): 146-154. | |
| [40] | Xu F, Wang H X, Xing S Q, et al. Seeking optimized transformer oil-based nanofluids by investigation of the modification mechanism of nano-dielectrics[J]. Journal of Materials Chemistry C, 2020, 8(22): 7336-7343. |
| [41] | Duzkaya H, Beroual A. Statistical analysis of AC dielectric strength of natural ester-based ZnO nanofluids[J]. Energies, 2021, 14(1): 99. |
| [42] | 张荣伦, 吴佳穗, 管紫璇, 等. 基于弛豫时间分布函数的油纸绝缘老化状态研究[J]. 绝缘材料, 2024, 57(8): 82-91. |
| Zhang R L, Wu J S, Guan Z X, et al. Research on ageing state of oil-paper insulation based on relaxation time distribution function[J]. Insulating Materials, 2024, 57(8): 82-91. | |
| [43] | 胡一卓, 董明, 谢佳成, 等. 空间电荷引起的油纸绝缘低频弛豫现象研究[J]. 中国电机工程学报, 2020, 40(6): 2026-2038. |
| Hu Y Z, Dong M, Xie J C, et al. Study of low frequency domain relaxation of oil-paper insulation caused by space charge[J]. Proceedings of the CSEE, 2020, 40(6): 2026-2038. | |
| [44] | Hwang J G, Zahn M, O’Sullivan F M, et al. Effects of nanoparticle charging on streamer development in transformer oil-based nanofluids[J]. Journal of Applied Physics, 2010, 107(1): 014310. |
| [45] | Gowtham B, Balasubramani V, Ramanathan S, et al. Dielectric relaxation, electrical conductivity measurements, electric modulus and impedance analysis of WO3 nanostructures[J]. Journal of Alloys and Compounds, 2021, 888: 161490. |
| [46] | 陈亚琦, 黄铁铁, 金桂, 等. 水热法合成的六方晶相WO3伏安特性的研究[J]. 电子元件与材料, 2013, 32(6): 31-33. |
| Chen Y Q, Huang T T, Jin G, et al. Study on the I-V characteristics of hexagonal tungsten trioxide synthesized by hydrothermal method[J]. Electronic Components and Materials, 2013, 32(6): 31-33. | |
| [47] | Coelho M F, Rivas M A, Vilão G, et al. Permittivity and electrical conductivity of copper oxide nanofluid (12 nm) in water at different temperatures[J]. The Journal of Chemical Thermodynamics, 2019, 132: 164-173. |
| [48] | Guo Z K, Ren X, Li L J, et al. Hierarchical porous electrode impedance model based on diffusion dynamics and the electrode morphology and prediction of electric double-layer structures[J]. ACS Applied Energy Materials, 2023, 6(1): 508-518. |
| [49] | Rashed A K, Mansour D E A, Rezk A, et al. Developing a novel optical sensor for condition assessment of aged mineral oil based on carbon dots[J]. Measurement, 2024, 225: 113956. |
| [50] | 邹阳, 蔡金锭. 油纸绝缘变压器时域极化谱特性实验分析[J]. 电工技术学报, 2015, 30(12): 307-313. |
| Zou Y, Cai J D. Experimental analysis on time-domain polarization spectrum of oil-paper insulation transformer[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 307-313. | |
| [51] | Samy A M, Ibrahim M E, Abd-Elhady A M, et al. On electric field distortion for breakdown mechanism of nanofilled transformer oil[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105632. |
| [52] | Dhar P, Katiyar A, Maganti L S, et al. Superior dielectric breakdown strength of graphene and carbon nanotube infused nano-oils[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(2): 943-956. |
| [53] | Liu X H, Xi S B, Kim H, et al. Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction[J]. Nature Communications, 2021, 12(1): 5676. |
| [54] | Zhang C R, Wang Y, Yan Z M, et al. Interplay between nanoparticles and water on dielectric properties of nanofluids[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(5): 1456-1462. |
| [55] | Zhang C R, Wang Y, Yan Z M, et al. Effect of the coexistence of Al2O3 nanoparticles and water on transformer oil electrical performance[J]. IEEE Access, 2019, 7: 10189-10195. |
| [56] | Malta G, Kondrat S A, Freakley S J, et al. Deactivation of a single-site gold-on-carbon acetylene hydrochlorination catalyst: an X-ray absorption and inelastic neutron scattering study[J]. ACS Catalysis, 2018, 8(9): 8493-8505. |
| [57] | Wang J, Yang X, Klemeš J J, et al. A review on nanofluid stability: preparation and application[J]. Renewable and Sustainable Energy Reviews, 2023, 188: 113854. |
| [58] | 慕江勇, 崔继峰, 陈小刚, 等. 微通道中一类生物流体在高Zeta势下的电渗流及传热特性[J]. 物理学报, 2024, 73(6): 161-172. |
| Mu J Y, Cui J F, Chen X G, et al. Electroosmotic flow and heat transfer characteristics of a class of biofluids in microchannels at high Zeta potential[J]. Acta Physica Sinica, 2024, 73(6): 161-172. | |
| [59] | 仇磊, 陈鼎, 朱莉莉, 等. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643. |
| Qiu L, Chen D, Zhu L L, et al. Dispersion stability of graphene oxide as lubricant additive[J]. Materials Reports, 2019, 33(16): 2638-2643. | |
| [60] | Nabil M F, Azmi W H, Hamid K A, et al. Experimental investigation of heat transfer and friction factor of TiO2-SiO2 nanofluids in water: ethylene glycol mixture[J]. International Journal of Heat and Mass Transfer, 2018, 124: 1361-1369. |
| [61] | Gulzar O, Qayoum A, Gupta R. Experimental study on thermal conductivity of mono and hybrid Al2O3-TiO2 nanofluids for concentrating solar collectors[J]. International Journal of Energy Research, 2021, 45(3): 4370-4384. |
| [62] | Zhang H F, Zhang Z L, Yan J Y, et al. Revealing the intrinsic correlation between Cu scales and free radical chain reactions in the regulation of catalytic behaviour[J]. Molecules, 2024, 29(19): 4690. |
| [63] | Das S, Bandyopadhyay K, Ghosh M M. A study on thermal conductivity and stability of nanofluids containing chemically synthesized nanoparticles for advanced thermal applications[J]. Journal of Materials Engineering and Performance, 2018, 27(8): 3994-4004. |
| [64] | Liu Y Z, Xu Y, Duan W H. Berry phase and topological effects of phonons[J]. National Science Review, 2018, 5(3): 314-316. |
| [65] | Oresta P, Micali F, De Risi A. Undulatory theory of phonons on the nanofluid thermal conduction[J]. International Journal of Thermal Sciences, 2023, 183: 107853. |
| [1] | SHI Hongchen, ZHANG Xiaohuai, SUN Fengrui, YANG Li, WANG Weiqing. Inverse heat transfer algorithm for liquid-level detection of storage tank based on infrared imaging temperature measurement [J]. CIESC Journal, 2012, 63(12): 3771-3775. |
| [2] | ZHANG Feng,GENG Jiao,ZHAO Xianguang,WANG Zhixiang,ZHANG Zhibing. Thermal imaging study of falling liquid films [J]. , 2006, 25(10): 1188-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||