CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2483-2504.DOI: 10.11949/0438-1157.20241301
• Reviews and monographs • Previous Articles Next Articles
Fang LI(), Yiran WANG, Penghe ZHANG, Yueming LIU(
), Mingyuan HE
Received:
2024-11-14
Revised:
2025-02-13
Online:
2025-07-09
Published:
2025-06-25
Contact:
Yueming LIU
通讯作者:
刘月明
作者简介:
李芳(1998—),女,博士研究生,1357863878@qq.com
基金资助:
CLC Number:
Fang LI, Yiran WANG, Penghe ZHANG, Yueming LIU, Mingyuan HE. Hydrogen transfer reactions in hydrocarbon conversion process[J]. CIESC Journal, 2025, 76(6): 2483-2504.
李芳, 王怡然, 张鹏鹤, 刘月明, 何鸣元. 烃转化过程中的氢转移反应[J]. 化工学报, 2025, 76(6): 2483-2504.
[1] | Kim J, Sovacool B K, Bazilian M, et al. Decarbonizing the iron and steel industry: a systematic review of sociotechnical systems, technological innovations, and policy options[J]. Energy Research & Social Science, 2022, 89: 102565. |
[2] | Paál Z, Menon P G. Hydrogen Effects in Catalysis: Fundamentals and Practical Applications[M]. New York: Marcel Dekker, 1988. |
[3] | 何鸣元, 孙予罕. 绿色碳科学: 化石能源增效减排的科学基础[J]. 中国科学(化学), 2011, 41(5): 925-932. |
He M Y, Sun Y H. Green carbon science: scientific basis for the efficient utilization of fossil energy with low emission[J]. Scientia Sinica Chimica, 2011, 41(5): 925-932. | |
[4] | He M Y, Sun Y H, Han B X. Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling[J]. Angewandte Chemie International Edition, 2013, 52(37): 9620-9633. |
[5] | Su B L, Han B X, Liu H C, et al. Editorial for the special issue of ChemSusChem on green carbon science: CO2 capture and conversion[J]. ChemSusChem, 2020, 13(23): 6051-6053. |
[6] | He M Y, Sun Y H, Han B X. Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality[J]. Angewandte Chemie International Edition, 2022, 61(15): e202112835. |
[7] | He M Y, Zhang K, Guan Y J, et al. Green carbon science: fundamental aspects[J]. National Science Review, 2023, 10(9): nwad046. |
[8] | Xie Z K, Han B X, Sun Y H, et al. Green carbon science for carbon neutrality[J]. National Science Review, 2023, 10(9): nwad225. |
[9] | He M Y. The development of catalytic cracking catalysts: acidic property related catalytic performance[J]. Catalysis Today, 2002, 73(1/2): 49-55. |
[10] | 何鸣元. 石油炼制和基本有机化学品合成的绿色化学[M]. 北京: 中国石化出版社, 2006. |
He M Y. Green Chemistry of Petroleum Refining and Synthesis of Basic Organic Chemicals[M]. Beijing: China Petrochemical Press, 2006. | |
[11] | Lachman A. The benzil rearrangement. Ⅴ. Cannizzaro's reaction[J]. Journal of the American Chemical Society, 1923, 45(10): 2356-2363. |
[12] | Thomas C L. Hydrocarbon reactions in the presence of cracking catalysts. Ⅱ. Hydrogen transfer[J]. Journal of the American Chemical Society, 1944, 66(9): 1586-1589. |
[13] | Savage P E. Hydrogen-transfer mechanisms in 1-dodecylpyrene pyrolysis[J]. Energy & Fuels, 1995, 9(4): 590-598. |
[14] | Hao H G, Chang T, Cui L X, et al. Theoretical study on the mechanism of hydrogen donation and transfer for hydrogen-donor solvents during direct coal liquefaction[J]. Catalysts, 2018, 8(12): 648. |
[15] | Wojciechowski B, Corma A. Catalytic Cracking: Catalysts, Chemistry, and Kinetics[M]. United States: Marcel Dekker, 1986. |
[16] | 阎立军, 傅军, 何鸣元. 正己烷在分子筛上的裂化反应机理研究(Ⅱ): 双分子氢转移反应遵循Rideal机理[J]. 石油学报(石油加工), 2000, 16(4): 6-12. |
Yan L J, Fu J, He M Y. Study of the cracking mechanism of n-hexane over zeolites(Ⅱ): Bimolecular hydride transfer reaction proceeds via rideal mechanism[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2000, 16(4): 6-12. | |
[17] | 甄开吉. 催化作用基础[M]. 3版. 北京: 科学出版社, 2005: 390. |
Zhen K J. Fundamentals of Catalysis[M]. 3rd ed. Beijing: Science Press, 2005: 390. | |
[18] | Pine L A, Maher P J, Wachter W A. Prediction of cracking catalyst behavior by a zeolite unit cell size model[J]. Journal of Catalysis, 1984, 85(2): 466-476. |
[19] | Wielers A F H, Vaarkamp M, Post M F M. Relation between properties and performance of zeolites in paraffin cracking[J]. Journal of Catalysis, 1991, 127(1): 51-66. |
[20] | Guerzoni F N, Abbot J. Cracking of an industrial feedstock over combinations of H-ZSM-5 and HY: the influence of H-ZSM-5 pretreatment[J]. Applied Catalysis A: General, 1994, 120(1): 55-69. |
[21] | Corma A, Faraldos M, Martínez A, et al. Hydrogen transfer on USY zeolites during gas oil cracking: influence of the adsorption characteristics of the zeolite catalysts[J]. Journal of Catalysis, 1990, 122(2): 230-239. |
[22] | Corma A, Orchillés A V. Formation of products responsible for motor and research octane of gasolines produced by cracking: the implication of framework Si/Al ratio and operation variables[J]. Journal of Catalysis, 1989, 115(2): 551-566. |
[23] | Wojciechowski B W. The reaction mechanism of catalytic cracking: quantifying activity, selectivity, and catalyst decay[J]. Catalysis Reviews, 1998, 40(3): 209-328. |
[24] | Corma A, Miguel P J, Orchilles A V. The role of reaction temperature and cracking catalyst characteristics in determining the relative rates of protolytic cracking, chain propagation, and hydrogen transfer[J]. Journal of Catalysis, 1994, 145(1): 171-180. |
[25] | Corma A, Miguel P J, Orchillés A V. Can macroscopic parameters, such as conversion and selectivity, distinguish between different cracking mechanisms on acid catalysts?[J]. Journal of Catalysis, 1997, 172(2): 355-369. |
[26] | 许友好. 氢转移反应在烯烃转化中的作用探讨[J]. 石油炼制与化工, 2002, 33(1): 38-41. |
Xu Y H. Study on the effect of hydrogen transfer reaction on olefin conversion[J]. Petroleum Processing and Petrochemicals, 2002, 33(1): 38-41. | |
[27] | Arzumanov S S, Stepanov A G, Freude D. Kinetics of H/D exchange for n-butane on zeolite H-ZSM-5 studied with 1H MAS NMR in situ [J]. The Journal of Physical Chemistry C, 2008, 112(31): 11869-11874. |
[28] | Potapenko O V, Doronin V P, Sorokina T P, et al. A study of intermolecular hydrogen transfer from naphthenes to 1-hexene over zeolite catalysts[J]. Applied Catalysis A: General, 2016, 516: 153-159. |
[29] | Jiao J H, Qin Y C, Zheng J, et al. Synergistic mechanism between Brønsted acid site and active cerium species in hydride transfer reaction over CeY zeolites[J]. Journal of Rare Earths, 2020, 38(8): 912-920. |
[30] | Corma A, Wojciechowski B W. The chemistry of catalytic cracking[J]. Catalysis Reviews, 1985, 27(1): 29-150. |
[31] | Chen D D, Liu D Y, Wei J, et al. The effect of acid strength on the mechanism of catalytic pyrolysis reaction of n-hexane in ZSM5: a DFT study[J]. Applied Catalysis A: General, 2023, 665: 119389. |
[32] | 白风宇, 代振宇, 魏晓丽, 等. 改善直馏石脑油催化裂解过程中环烷烃裂解选择性的研究[J]. 石油炼制与化工, 2018, 49(9): 32-36. |
Bai F Y, Dai Z Y, Wei X L, et al. Study of improving catalytic cracking selectivity of naphthene in straight-run naphtha[J]. Petroleum Processing and Petrochemicals, 2018, 49(9): 32-36. | |
[33] | 付佳, 冯翔, 刘熠斌, 等. Brønsted酸强度对正碳离子转化方向影响的分子模拟[J]. 化工学报, 2018, 69(2): 725-732. |
Fu J, Feng X, Liu Y B, et al. Influence of Brønsted acid strength on conversion of carbenium ion by molecular simulation[J]. CIESC Journal, 2018, 69(2): 725-732. | |
[34] | Blaszkowski S R, Nascimento M A C, van Santen R A. Activation of C—H and C—C bonds by an acidic zeolite: a density functional study[J]. The Journal of Physical Chemistry, 1996, 100(9): 3463-3472. |
[35] | 陶龙骧. 催化裂化过程中的负氢离子转移反应[J]. 石油学报(石油加工), 2008, 24(4): 365-369. |
Tao L X. Hydride transfer reaction in catalytic cracking[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2008, 24(4): 365-369. | |
[36] | Lukyanov D B, Shtral V I, Khadzhiev S N. A kinetic model for the hexane cracking reaction over H-ZSM-5[J]. Journal of Catalysis, 1994, 146(1): 87-92. |
[37] | Guisnet M, Andy P, Gnep N S, et al. Skeletal isomerization of n-butenes ( Ⅰ ) : mechanism of n-butene transformation on a nondeactivated H-ferrierite catalyst[J]. Journal of Catalysis, 1996, 158(2): 551-560. |
[38] | Lukyanov D B. A test method for quantitative characterization of zeolite hydrogen transfer activity[J]. Journal of Catalysis, 1994, 145(1): 54-57. |
[39] | 高永灿, 张久顺. 催化裂化过程中氢转移反应的研究[J]. 炼油设计, 2000, 30(11): 34-38. |
Gao Y C, Zhang J S. Study on hydrogen transfer reaction in catalytic cracking[J]. Petroleum Refinery Engineering, 2000, 30(11): 34-38. | |
[40] | 张剑秋. 利用正十二烷研究催化裂化中的氢转移指数[J]. 石油炼制与化工, 2013, 44(6): 6-11. |
Zhang J Q. Study on hydrogen transfer index with dodecane catalytic cracking[J]. Petroleum Processing and Petrochemicals, 2013, 44(6): 6-11. | |
[41] | Zhu X X, Liu S L, Song Y Q, et al. Catalytic cracking of C4 alkenes to propene and ethene: influences of zeolites pore structures and Si/Al2 ratios[J]. Applied Catalysis A: General, 2005, 288(1/2): 134-142. |
[42] | 黄鑫, 林玉霞, 阎炳会, 等. 失活TS-1高效催化 C 4 = 裂解制 C 3 = 反应的研究[J]. 化工学报, 2021, 72(10): 5183-5195. |
Huang X, Lin Y X, Yan B H, et al. Deactivated TS-1 as an efficient catalyst for catalytic cracking of butene to propene[J]. CIESC Journal, 2021, 72(10): 5183-5195. | |
[43] | 黄鑫. 失活钛硅分子筛催化 C 4 = 裂解反应的研究[D]. 上海: 华东师范大学, 2021. |
Huang X. Study on the deactivated titanosilicate zeolite as a catalyst for cracking of butene[D]. Shanghai: East China Normal University, 2021. | |
[44] | Li F, Zhao Q, Yan B H, et al. Hydrogen transfer reaction in butene catalytic cracking over ZSM-5[J]. Microporous and Mesoporous Materials, 2024, 373: 113122. |
[45] | 阎立军, 傅军, 何鸣元. 正己烷在分子筛上的裂化反应机理研究(Ⅰ): 正己烷的裂化反应链长[J]. 石油学报(石油加工), 2000, 16(3): 15-26. |
Yan L J, Fu J, He M Y. Study of the mechanism of the cracking of n-hexane over zeolites(Ⅰ): The cracking chain length of n-hexane over zeolites[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2000, 16(3): 15-26. | |
[46] | Yang W J, Xu Y H, Shu X T, et al. Insights into the effects of zeolite structural confinement on pentene catalytic cracking to light olefins[J]. Applied Energy, 2023, 349: 121665. |
[47] | Zhao Q, Li F, Wang Y R, et al. Acid strength controlled reaction pathways of propylene conversion under olefin cracking conditions over ZSM-5[J]. Fuel, 2024, 371: 132077. |
[48] | Derouane E G. Shape selectivity in catalysis by zeolites: the nest effect[J]. Journal of Catalysis, 1986, 100(2): 541-544. |
[49] | 朱华元, 何鸣元, 张信, 等. 正己烷在几种不同分子筛上的氢转移反应[J]. 石油炼制与化工, 2001, 32(9): 39-42. |
Zhu H Y, He M Y, Zhang X, et al. Hydrogen transfer reaction of n-hexane over various zeolites[J]. Petroleum Processing and Petrochemicals, 2001, 32(9): 39-42. | |
[50] | Corma A, Martı́nez-Triguero J, Valencia S, et al. IM-5: a highly thermal and hydrothermal shape-selective cracking zeolite[J]. Journal of Catalysis, 2002, 206(1): 125-133. |
[51] | Matias P, Lopes J M, Laforge S, et al. n-Heptane and methylcyclohexane transformation over a HMCM-22 zeolite. Origin of the features typical of large- or of medium-pore zeolites[J]. Reaction Kinetics and Catalysis Letters, 2008, 95(1): 193-201. |
[52] | Meusinger J, Corma A. Influence of zeolite composition and structure on hydrogen transfer reactions from hydrocarbons and from hydrogen[J]. Journal of Catalysis, 1996, 159(2): 353-360. |
[53] | Miyaji A, Iwase Y, Nishitoba T, et al. Influence of zeolite pore structure on product selectivities for protolysis and hydride transfer reactions in the cracking of n-pentane[J]. Physical Chemistry Chemical Physics, 2015, 17(7): 5014-5032. |
[54] | 张小乐. 抑制丁烯催化裂解中氢转移反应的研究[D]. 大连: 大连理工大学, 2012. |
Zhang X L. Study on inhibiting hydrogen transfer reaction in catalytic cracking of butene[D]. Dalian: Dalian University of Technology, 2012. | |
[55] | Abbot J, Corma A, Wojciechowski B W. The catalytic isomerization of 1-hexene on H-ZSM-5 zeolite: the effects of a shape-selective catalyst[J]. Journal of Catalysis, 1985, 92(2): 398-408. |
[56] | Li W Q, Li Y F, Liu Z Q, et al. Pore-confined and diffusion-dependent olefin catalytic cracking for the production of propylene over SAPO zeolites[J]. Industrial & Engineering Chemistry Research, 2022, 61(23): 7760-7776. |
[57] | Miyaji A, Sakamoto Y, Iwase Y, et al. Selective production of ethylene and propylene via monomolecular cracking of pentene over proton-exchanged zeolites: pentene cracking mechanism determined by spatial volume of zeolite cavity[J]. Journal of Catalysis, 2013, 302: 101-114. |
[58] | 阚仁俊, 达志坚, 陈妍, 等. 基于高温裂解仪的氢化芳烃热裂解研究[J]. 石油炼制与化工, 2023, 54(3): 82-89. |
Kan R J, Da Z J, Chen Y, et al. Study on thermal cracking of hydrogenated aromatics using high-temperature cracker[J]. Petroleum Processing and Petrochemicals, 2023, 54(3): 82-89. | |
[59] | 王为然, 张文斌, 王刚, 等. FCC汽油二次裂化增产丙烯过程中主要影响因素的研究[J]. 燃料化学学报, 2009, 37(1): 65-70. |
Wang W R, Zhang W B, Wang G, et al. Study on influence factors for FCC naphtha catalytic cracking for propylene[J]. Journal of Fuel Chemistry and Technology, 2009, 37(1): 65-70. | |
[60] | 许友好, 崔守业, 汪燮卿. FCC汽油烯烃双分子裂化反应及其与双分子氢转移反应之比的研究[J]. 石油炼制与化工, 2007, 38(9): 1-5. |
Xu Y H, Cui S Y, Wang X Q. Study on the bimolecular catalytic cracking reaction and its ratio to the bimolecular hydrogen transfer reaction[J]. Petroleum Processing and Petrochemicals, 2007, 38(9): 1-5. | |
[61] | 郭爱军, 王宗贤, 阙国和. 饱和烃热裂化夺氢氢转移能力研究[J]. 燃料化学学报, 2001, 29(5): 404-407. |
Guo A J, Wang Z X, Que G H. Study on the hydrogen abstraction abilities of saturate hydrocarbons under thermal cracking[J]. Journal of Fuel Chemistry and Technology, 2001, 29(5): 404-407. | |
[62] | Greensfelder B S, Voge H H, Good G M. Catalytic and thermal cracking of pure hydrocarbons: mechanisms of reaction[J]. Industrial & Engineering Chemistry, 1949, 41(11): 2573-2584. |
[63] | Cejka J, Corma A, Zones S. Zeolites and Catalysis: Synthesis, Reactions and Applications[M]. Newark: John Wiley & Sons, Incorporated, 2010. |
[64] | Wu T, Yuan G M, Chen S L, et al. Butylene catalytic cracking to propylene over a hierarchical HZSM-5 zeolite: Location of acid sites controlling the reaction pathway[J]. Molecular Catalysis, 2018, 453: 161-169. |
[65] | Dědeček J, Tabor E, Sklenak S. Tuning the aluminum distribution in zeolites to increase their performance in acid-catalyzed reactions[J]. ChemSusChem, 2019, 12(3): 556-576. |
[66] | Li S, Cao J L, Liu Y B, et al. Effect of acid strength on the formation mechanism of tertiary butyl carbocation in initial C4 alkylation reaction over H-BEA zeolite: a density functional theory study[J]. Catalysis Today, 2020, 355: 171-179. |
[67] | Potapenko O V, Doronin V P, Sorokina T P, et al. Intermolecular hydrogen transfer reactions as key stages in the catalytic cracking: achievements and outlook[J]. Russian Chemical Reviews, 2023, 92(1): RCR5065. |
[68] | Zhu X X, Liu S L, Song Y Q, et al. Butene catalytic cracking to propene and ethene over potassium modified ZSM-5 catalysts[J]. Catalysis Letters, 2005, 103(3): 201-210. |
[69] | Arudra P, Bhuiyan T I, Akhtar M N, et al. Silicalite-1 as efficient catalyst for production of propene from 1-butene[J]. ACS Catalysis, 2014, 4(11): 4205-4214. |
[70] | Auepattana-aumrung C, Suriye K, Jongsomjit B, et al. Inhibition effect of Na+ form in ZSM-5 zeolite on hydrogen transfer reaction via 1-butene cracking[J]. Catalysis Today, 2020, 358: 237-245. |
[71] | 梁翠翠, 徐瑞芳, 常旭升, 等. 丁烯催化裂解反应中的C—H键型副反应和化学平衡问题[J]. 分子催化, 2011, 25(1): 69-77. |
Liang C C, Xu R F, Chang X S, et al. Catalytic cracking of butenes: on the C—H bond related side-reactions and chemical equilibrium[J]. Journal of Molecular Catalysis, 2011, 25(1): 69-77. | |
[72] | Lin Y X, Xu D Y, Chen Z, et al. P-modified deactivated TS-1: a benign catalyst for the MTP reaction[J]. Catalysis Today, 2022, 405: 258-266. |
[73] | Khanmohammadi M, Amani S, Garmarudi A B, et al. Methanol-to-propylene process: perspective of the most important catalysts and their behavior[J]. Chinese Journal of Catalysis, 2016, 37(3): 325-339. |
[74] | Chang C D, Chu C T, Socha R F. Methanol conversion to olefins over ZSM-5(Ⅰ): Effect of temperature and zeolite SiO2/Al2O3 [J]. Journal of Catalysis, 1984, 86(2): 289-296. |
[75] | Xu R F, Liu J X, Liang C C, et al. Effect of alkali metal ion modification on the catalytic performance of nano-HZSM-5 zeolite in butene cracking[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 449-454. |
[76] | Xue N H, Liu N, Nie L, et al. 1-Butene cracking to propene over P/HZSM-5: effect of lanthanum[J]. Journal of Molecular Catalysis A: Chemical, 2010, 327(1/2): 12-19. |
[77] | Zhao G L, Teng J W, Xie Z K, et al. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene[J]. Journal of Catalysis, 2007, 248(1): 29-37. |
[78] | Xue N H, Chen X K, Nie L, et al. Understanding the enhancement of catalytic performance for olefin cracking: hydrothermally stable acids in P/HZSM-5[J]. Journal of Catalysis, 2007, 248(1): 20-28. |
[79] | Jiang G Y, Zhang L, Zhao Z, et al. Highly effective P-modified HZSM-5 catalyst for the cracking of C4 alkanes to produce light olefins[J]. Applied Catalysis A: General, 2008, 340(2): 176-182. |
[80] | Wang Z W, Jiang G Y, Zhao Z, et al. Highly efficient P-modified HZSM-5 catalyst for the coupling transformation of methanol and 1-butene to propene[J]. Energy & Fuels, 2010, 24(2): 758-763. |
[81] | Lin L F, Qiu C F, Zhuo Z X, et al. Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5[J]. Journal of Catalysis, 2014, 309: 136-145. |
[82] | 徐德义, 丁超俊, 李芳, 等. 磷改性失活TS-1高效催化 C 5 = 裂解制备 C 2 = / C 3 = 反应的研究[J]. 高等学校化学学报, 2023, 44(8): 126-134. |
Xu D Y, Ding C J, Li F, et al. P-modified deactivated TS-1 as an efficient catalyst for catalytic cracking of pentene to ethene and propene[J]. Chemical Journal of Chinese Universities, 2023, 44(8): 126-134. | |
[83] | Rigby A M, Kramer G J, van Santen R A. Mechanisms of hydrocarbon conversion in zeolites: a quantum mechanical study[J]. Journal of Catalysis, 1997, 170(1): 1-10. |
[84] | Lin L F, Zhao S F, Zhang D W, et al. Acid strength controlled reaction pathways for the catalytic cracking of 1-pentene to propene over ZSM-5[J]. ACS Catalysis, 2015, 5(7): 4048-4059. |
[85] | Hattori H, Arudra P, Abdalla A, et al. Infrared study of silanol groups on dealuminated high silica MFI zeolite to correlate different types of silanol groups with activity for conversion of 1-butene to propene[J]. Catalysis Letters, 2020, 150(3): 771-780. |
[86] | Li S, Cao J L, Dang Y, et al. Understanding the effect of acid strength on the alkane-alkoxide hydride transfer reaction over solid acid catalysts: insights from density functional theory[J]. Industrial & Engineering Chemistry Research, 2019, 58(22): 9314-9321. |
[87] | 程谟杰, 杨亚书. ZnHZSM-5上脱氢环化芳构化过程的探讨[J]. 分子催化, 1996, 10(6): 418-422. |
Cheng M J, Yang Y S. Study on dehydrocyclization and aromatization process over ZnHZSM 5 catalyst[J]. Journal of Molecular Catalysis (China), 1996, 10(6): 418-422. | |
[88] | 冯锐, 方舟, 周鹏, 等. 基质Lewis酸性调控及其催化轻烃裂化反应性能[J]. 燃料化学学报, 2024, 52(2): 218-233. |
Feng R, Fang Z, Zhou P, et al. Regulation of the Lewis acidity on matrix and their performance in the catalytic cracking of light hydrocarbons[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 218-233. | |
[89] | Mota C J A, Bhering D L, Rosenbach N. A DFT study of the acidity of ultrastable Y zeolite: where is the Brønsted/Lewis acid synergism?[J]. Angewandte Chemie International Edition, 2004, 43(23): 3050-3053. |
[90] | Schallmoser S, Ikuno T, Wagenhofer M F, et al. Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking[J]. Journal of Catalysis, 2014, 316: 93-102. |
[91] | 朱华元, 何鸣元, 宋家庆, 等. 含碱土金属分子筛对FCC催化剂催化性能的影响[J]. 石油学报(石油加工), 2001, 17(6): 6-10. |
Zhu H Y, He M Y, Song J Q, et al. Influence of zeolites containing alkaline earth metal on performance of FCC catalysts[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2001, 17(6): 6-10. | |
[92] | 朱华元, 何鸣元, 宋家庆, 等. 含碱金属离子的分子筛的添加对FCC催化剂催化性能的影响[J]. 催化学报, 2001, 22(5): 432-436. |
Zhu H Y, He M Y, Song J Q, et al. Influence of incorporated alkali cation-exchanged zeolites on performance of FCC catalysts[J]. Chinese Journal of Catalysis, 2001, 22(5): 432-436. | |
[93] | Fan L L, Zhang Y N, Liu S Y, et al. Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO[J]. Energy Conversion and Management, 2017, 149: 432-441. |
[94] | Fu Y, Guo Y H, Zhang K X. Effect of three different catalysts (KCl, CaO, and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy & Fuels, 2016, 30(3): 2428-2433. |
[95] | Gao M S, Zhang G H, Zhao L, et al. Research progress of basic catalyst used in catalytic cracking for olefin production and heavy oil utilization[J]. Industrial & Engineering Chemistry Research, 2023, 62(3): 1215-1226. |
[96] | Arutyunov V S, Magomedov R N. Gas-phase oxypyrolysis of light alkanes[J]. Russian Chemical Reviews, 2012, 81(9): 790-822. |
[97] | Zhang J H, Che Y J, Wang Z B, et al. Coupling process of heavy oil millisecond pyrolysis and coke gasification: a fundamental study[J]. Energy & Fuels, 2016, 30(8): 6698-6708. |
[98] | 吴青. 原油(重油)制化学品的技术及其进展(Ⅱ): 重油催化裂解与DPC碱催化技术[J]. 炼油技术与工程, 2022, 52(8): 1-7, 15. |
Wu Q. Technology and progress in crude oil to chemicals (Ⅱ): Catalytic cracking technology and DPC basic catalytic cutting technology[J]. Petroleum Refinery Engineering, 2022, 52(8): 1-7, 15. | |
[99] | Wu Q. Acidic and basic catalytic cracking technologies and its development prospects for crude oil to chemicals[J]. Fuel, 2023, 332: 126132. |
[100] | 吴青. 富产化学品的绿色高效石油碱催化新技术[J]. 石油炼制与化工, 2024, 55(1): 189-201. |
Wu Q. Base catalytic technology for low carbon and efficient petroleum processing with enhanced chemical production[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 189-201. | |
[101] | Tang R Y, Tian Y Y, Qiao Y Y. Bifunctional catalyst cracking gasification of vacuum residue for coproduction of light olefins and H2-rich syngas[C]//Proceedings of the 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017). Beijing, 2017: 188-191. |
[102] | Zhang D, Zong P J, Li J, et al. Fundamental studies and pilot verification of an olefins/aromatics-rich chemical production from crude oil dehydrogenation catalytic pyrolysis process[J]. Fuel, 2022, 310: 122435. |
[103] | Choudhary V R, Kinage A K, Choudhary T V. Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite[J]. Science, 1997, 275(5304): 1286-1288. |
[104] | 朱向学, 刘盛林, 牛雄雷, 等. ZSM-5分子筛上C4烯烃催化裂解制丙烯和乙烯[J]. 石油化工, 2004, 33(4): 320-324. |
Zhu X X, Liu S L, Niu X L, et al. Catalytic cracking of C4 olefins to propene/ethene on ZSM-5 molecular sieve[J]. Petrochemical Technology, 2004, 33(4): 320-324. | |
[105] | Du L Y, Han Y Y, Zhu Y, et al. Reaction pathway of 1-decene cracking to produce light olefins over H-ZSM-5 at ultrahigh temperature[J]. ACS Omega, 2023, 8(7): 7093-7101. |
[106] | Wu Y, Wang X H, Song Q S, et al. The effect of temperature and pressure on n-heptane thermal cracking in regenerative cooling channel[J]. Combustion and Flame, 2018, 194: 233-244. |
[107] | 李晓红. 两段提升管催化裂化多产丙烯(TMP)技术应用基础研究[D]. 青岛: 中国石油大学(华东), 2007. |
Li X H. Fundamental studies on the technology of fluid catalytic cracking with two-stage risers for maximizing propylene[D]. Qingdao: China University of Petroleum, 2007. | |
[108] | 王瑞浦. ZSM-5分子筛上1-己烯与正癸烷共进料反应研究[D]. 北京: 中国石油大学(北京), 2021. |
Wang R P. Study on reaction about 1-hexene co-feeding with n-decane on ZSM-5 zeolites[D]. Beijing: China University of Petroleum, 2021. | |
[109] | Wei C C, Zhang W N, Yang K, et al. An efficient way to use CO2 as chemical feedstock by coupling with alkanes[J]. Chinese Journal of Catalysis, 2023, 47: 138-149. |
[110] | Yang K, Li J Z, Wei C C, et al. Coupling conversion of CO2 and n-butane over modified ZSM-5: incorporation of the carbon from CO2 into hydrocarbon products[J]. ACS Catalysis, 2023, 13(15): 10405-10417. |
[111] | Chang J. COTC projects to boost capacity[J]. ICIS Chemical Business, 2020, 298(11): 17. |
[112] | Oglesby T J, Allen C J, Liszewski M K,et al. Market outlook: COTC to redraw chems landscape[J]. Focus on Catalysts, 2024, 2024(1): 6. |
[113] | 黄丽敏. 原油制化学品技术(COTC)将重绘石化产业格局[J]. 石油炼制与化工, 2024, 55(4): 52. |
Huang L M. Crude oil-to-chemicals technology (COTC) will redraw the petrochemical industry[J]. Petroleum Processing and Petrochemicals, 2024, 55(4): 52. | |
[114] | 赵淑芳. 分子筛硅烷选择性裂解修饰及其催化 C 2 = / C 3 = 导向生成的研究[D]. 上海: 华东师范大学, 2017. |
Zhao S F. A study on zeolite modified by selective cracking of silanes and its catalytic applications in C 2 = / C 3 = -oriented generation[D]. Shanghai: East China Normal University, 2017. | |
[115] | 赵勤, 李芳, 张鹏鹤, 等. ZSM-5酸强度控制1- C 7 = 催化裂解反应路径的研究[J]. 化学学报, 2024, 82: 1-10. |
Zhao Q, Li F, Zhang P H, et al. Acid strength controlled reaction pathways for the catalytic cracking of 1-heptene over ZSM-5[J]. Acta Chimica Sinica, 2024, 82: 1-10. | |
[116] | 闵恩泽. 环境友好石油炼制技术的进展[J]. 化学进展, 1998, 10(2): 207-215. |
Min E Z. Progress of environment-friendly petroleum refining technology[J]. Progress in Chemistry, 1998, 10(2): 207-215. | |
[117] | 陈祖庇. 我国催化裂化催化剂发展的回顾与展望[J]. 炼油设计, 1999, 29(3): 1-7. |
Chen Z B. Review and prospect of development of catalytic cracking catalyst in China[J]. Petroleum Refinery Engineering, 1999, 29(3): 1-7. | |
[118] | 张春兰, 陈淑芬, 张远欣. 催化裂化催化剂的发展历程及研究进展[J]. 石油化工应用, 2013, 32(2): 5-9. |
Zhang C L, Chen S F, Zhang Y X. Development process and research progress of catalytic cracking catalyst[J]. Petrochemical Industry Application, 2013, 32(2): 5-9. | |
[119] | 周佩玲. 深度催化裂解(DCC)技术[J]. 石油化工, 1997, 26(8): 38-42. |
Zhou P L. Deep catalytic cracking(DCC) technology[J]. Petrochemical Technology, 1997, 26(8): 38-42. | |
[120] | 李大东. 21世纪的炼油技术与催化[J]. 石油学报(石油加工), 2005, 21(3): 17-24. |
Li D D. Petroleum refining technologies and catalysis in the 21st century[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2005, 21(3): 17-24. | |
[121] | 路军晓. DCC工艺与FCC工艺的区别[J]. 化工管理, 2021(34): 165-167. |
Lu J X. Difference analysis between DCC process and FCC process[J]. Chemical Enterprise Management, 2021(34): 165-167. | |
[122] | 彭特, 龚剑洪, 朱金泉. “双碳”政策下重油催化裂解技术研究进展[J]. 应用化工, 2024, 53(1): 200-205. |
Peng T, Gong J H, Zhu J Q. Research progress of heavy oil deep catalytic cracking under “Double Carbon” policy[J]. Applied Chemical Industry, 2024, 53(1): 200-205. | |
[123] | 谢朝钢, 汪燮卿, 郭志雄, 等. 催化热裂解(CPP)制取烯烃技术的开发及其工业试验[J]. 石油炼制与化工, 2001, 32(12): 7-10. |
Xie C G, Wang X Q, Guo Z X, et al. CPP technology for olefin production and its commercial trial[J]. Petroleum Processing and Petrochemicals, 2001, 32(12): 7-10. | |
[124] | 王大壮, 王鹤洲, 谢朝钢, 等. 重油催化热裂解(CPP)制烯烃成套技术的工业应用[J]. 石油炼制与化工, 2013, 44(1): 56-59. |
Wang D Z, Wang H Z, Xie C G, et al. Commercial trial of CPP complete technology for producing light olefins from heavy feedstock[J]. Petroleum Processing and Petrochemicals, 2013, 44(1): 56-59. | |
[125] | 宋昌才, 邓中活, 牛传峰. 重油生产低碳烯烃等化工品技术研究进展[J]. 化工进展, 2019, 38(S1): 86-94. |
Song C C, Deng Z H, Niu C F. Research progress on technology of producing low-carbon olefins and other chemicals from heavy oil[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 86-94. | |
[126] | 许友好, 张久顺, 龙军, 等. 多产异构烷烃的催化裂化工艺技术开发与工业应用[J]. 中国工程科学, 2003, 5(5): 55-58. |
Xu Y H, Zhang J S, Long J, et al. Development and commercial application of FCC process for maximizing iso-paraffins(MIP) in cracked naphtha[J]. Strategic Study of CAE, 2003, 5(5): 55-58. | |
[127] | 唐津莲, 崔守业, 程从礼. MIP技术在提高液体产品收率上的先进性分析[J]. 石油炼制与化工, 2015, 46(4): 29-32. |
Tang J L, Cui S Y, Cheng C L. Advantage of MIP series technologies in improving total liquid yield[J]. Petroleum Processing and Petrochemicals, 2015, 46(4): 29-32. | |
[128] | 陈尧焕. MIP技术加工加氢渣油的优势分析[J]. 石油炼制与化工, 2016, 47(1): 45-48. |
Chen Y H. Advantage analysis of MIP technology for processing hydrogenated residue[J]. Petroleum Processing and Petrochemicals, 2016, 47(1): 45-48. | |
[129] | 柳文, 赵欣, 邢东, 等. MIP技术在石蜡基原料催化裂化装置上的应用[J]. 石油炼制与化工, 2017, 48(6): 83-87. |
Liu W, Zhao X, Xing D, et al. Application of MIP technology in catalytic cracking unit processing paraffin feedstocks[J]. Petroleum Processing and Petrochemicals, 2017, 48(6): 83-87. | |
[130] | 隋志国, 孙立权, 王乐. MIP技术及专用催化剂在装置的应用[J]. 化工科技, 2018, 26(1): 45-48. |
Sui Z G, Sun L Q, Wang L. Application of MIP technology and dedicated catalyst in equipment[J]. Science & Technology in Chemical Industry, 2018, 26(1): 45-48. | |
[131] | 张锟俊. MIP技术在催化裂化装置上的工业应用[J]. 石化技术, 2023, 30(10): 40-42. |
Zhang K J. Industrial application of MIP technology in catalytic cracking units[J]. Petrochemical Industry Technology, 2023, 30(10): 40-42. | |
[132] | 许友好, 王维, 鲁波娜, 等. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
Xu Y H, Wang W, Lu B N, et al. China's oil refining innovation: MIP development strategy and enlightenment[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. | |
[133] | Treese S A, Pujadó P R, Jones D S J. Handbook of Petroleum Processing[M]. Berlin: Springer International Publishing, 2015. |
[134] | 许友好, 左严芬, 白旭辉, 等. 靶向生产低碳烯烃的催化裂化技术开发背景、思路和概念设计[J]. 石油炼制与化工, 2021, 52(8): 1-11. |
Xu Y H, Zuo Y F, Bai X H, et al. Development background, development idea and conceptual design of FCC process for targeted cracking to light olefins[J]. Petroleum Processing and Petrochemicals, 2021, 52(8): 1-11. | |
[135] | Xu Y H, Zuo Y F, Yang W J, et al. Targeted catalytic cracking to olefins (TCO): reaction mechanism, production scheme, and process perspectives[J]. Engineering, 2023, 30: 100-109. |
[136] | 吴青. 原油(重油)制化学品的技术及其进展(Ⅰ): 原油蒸汽裂解技术[J]. 炼油技术与工程, 2022, 52(4): 1-10. |
Wu Q. Technology and progress in crude oil to chemicals(Ⅰ): Crude oil steam cracking technology[J]. Petroleum Refinery Engineering, 2022, 52(4): 1-10. | |
[137] | 许友好, 何鸣元. 变径流化床反应器理论与实践[J]. 中国科学: 化学, 2020, 50(2): 271-281. |
Xu Y H, He M Y. Diameter transformed fluidized bed reactor: fundamentals and practice[J]. Scientia Sinica Chimica, 2020, 50(2): 271-281. | |
[138] | 徐占武. 催化裂解多产丙烯新技术[J]. 炼油技术与工程, 2006, 36(8): 4-8. |
Xu Z W. State-of-the-art catalytic cracking processes for maximizing propylene production[J]. Petroleum Refinery Engineering, 2006, 36(8): 4-8. | |
[139] | 滕加伟, 任丽萍. 烯烃催化裂解技术应用前景广阔[J]. 中国石化, 2024(7): 57-59. |
Teng J W, Ren L P. Olefin catalytic cracking technology has broad application prospects[J]. Sinopec Monthly, 2024(7): 57-59. | |
[140] | 张燕, 沈凯旭, 滕加伟. 烯烃催化裂解技术研究进展[J]. 化学反应工程与工艺, 2021, 37(2): 181-192. |
Zhang Y, Shen K X, Teng J W. Review of the olefin catalytic cracking technology[J]. Chemical Reaction Engineering and Technology, 2021, 37(2): 181-192. | |
[141] | 许友好, 王瑞霖, 阳文杰, 等. 石油炼制与化工工艺流程演变历程及变化趋势分析[J]. 当代石油石化, 2022, 30(12): 1-8, 50. |
Xu Y H, Wang R L, Yang W J, et al. Analysis and prospect of petroleum refining and chemical process evolution[J]. Petroleum & Petrochemical Today, 2022, 30(12): 1-8, 50. | |
[142] | Bhatt A H, Zhang Y M, Heath G. Bio-oil co-processing can substantially contribute to renewable fuel production potential and meet air quality standards[J]. Applied Energy, 2020, 268: 114937. |
[143] | Han X, Wang H X, Zeng Y M, et al. Advancing the application of bio-oils by co-processing with petroleum intermediates: a review[J]. Energy Conversion and Management: X, 2021, 10: 100069. |
[144] | Song B M. A probe into process for maximization of low-carbon olefins via co-processing of methanol and heavy oil[J]. China Petroleum Processing & Petrochemical Technology, 2013, 15(2): 37-41. |
[145] | Zhang W, Kim S, Wahl L, et al. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation[J]. Science, 2023, 379(6634): 807-811. |
[146] | Cen Z Y, Han X, Lin L F, et al. Upcycling of polyethylene to gasoline through a self-supplied hydrogen strategy in a layered self-pillared zeolite[J]. Nature Chemistry, 2024, 16(6): 871-880. |
[147] | Ding Y, Zhang S C, Liu C, et al. CO2-facilitated upcycling of polyolefin plastics to aromatics at low temperature[J]. National Science Review, 2024, 11(5): nwae097. |
[148] | Yang Y, Zhong H, Cheng J, et al. Carbohydrates generated via hot water as catalyst for CO2 reduction reaction[J]. Next Energy, 2023, 1(3): 100037. |
[149] | 么新. 全民践行绿色低碳行动助力实现碳达峰碳中和目标[J]. 资源再生, 2021(11): 22-23. |
Yao X. Practicing green and low-carbon actions for the whole people to help achieve the goal of carbon peak and carbon neutrality[J]. Resource Recycling, 2021(11): 22-23. | |
[150] | 白静. 推进数字行业高质量发展助力实现碳达峰碳中和目标: 解读《信息通信行业绿色低碳发展行动计划(2022—2025年)》[J]. 中国科技产业, 2023(2): 40-41. |
Bai J. Promoting the high-quality development of digital industry and helping to achieve the goal of carbon neutrality in peak carbon dioxide emissions: interpretation of the action plan for green and low-carbon development of information and communication industry (2022—2025)[J]. Science & Technology Industry of China, 2023(2): 40-41. | |
[151] | Zheng R Y, Liu Z C, Wang Y D, et al. The future of green energy and chemicals: rational design of catalysis routes[J]. Joule, 2022, 6(6): 1148-1159. |
[1] | Xin HUANG,Yuxia LIN,Binghui YAN,Yueming LIU. Deactivated TS-1 as an efficient catalyst for catalytic cracking of butene to propene [J]. CIESC Journal, 2021, 72(10): 5183-5195. |
[2] | GONG Ling,ZHOU Shaodong,CHEN Xinzhi. Research progress in hydrogen transfer reaction [J]. , 2010, 29(3): 478-. |
[3] |
ZHU Yuhong,MI Zhentao,ZHANG Xiangwen fuel at elevated temperature [J]. , 2006, 25(6): 595-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 142
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 192
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||