CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4017-4029.DOI: 10.11949/0438-1157.20250135
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Hailong SHE1,2(
), Guangzhong HU1(
), Xiaoyu CUI3, Zhongbin LIU1, Di PENG1, Hang LI1
Received:2025-02-14
Revised:2025-03-16
Online:2025-09-17
Published:2025-08-25
Contact:
Guangzhong HU
佘海龙1,2(
), 胡光忠1(
), 崔晓钰3, 柳忠彬1, 彭帝1, 李航1
通讯作者:
胡光忠
作者简介:佘海龙(1993—),男,博士,讲师,804777808@qq.com
基金资助:CLC Number:
Hailong SHE, Guangzhong HU, Xiaoyu CUI, Zhongbin LIU, Di PENG, Hang LI. Performance study on layered microchannel distributed throttling cryocooler with different working fluids[J]. CIESC Journal, 2025, 76(8): 4017-4029.
佘海龙, 胡光忠, 崔晓钰, 柳忠彬, 彭帝, 李航. 不同节流工质下叠层微通道分布式节流制冷器性能研究[J]. 化工学报, 2025, 76(8): 4017-4029.
Add to citation manager EndNote|Ris|BibTeX
| 位置 | 尺寸 |
|---|---|
| 入/出口段 | 10 mm |
| 高压回热段 | 0.55 mm × 0.40 mm × 105 mm |
| 高压节流段 | 0.15 mm × 0.10 mm × 40 mm |
| 低压回热段 | 0.55 mm × 0.40 mm × 145 mm |
| 膨胀腔 | 10 mm, 150° |
| 整体长度 | 165 mm |
Table 1 Structural parameters of microchannel throttling cryocooler
| 位置 | 尺寸 |
|---|---|
| 入/出口段 | 10 mm |
| 高压回热段 | 0.55 mm × 0.40 mm × 105 mm |
| 高压节流段 | 0.15 mm × 0.10 mm × 40 mm |
| 低压回热段 | 0.55 mm × 0.40 mm × 145 mm |
| 膨胀腔 | 10 mm, 150° |
| 整体长度 | 165 mm |
| 测量设备 | 精度 | 量程 |
|---|---|---|
| 入/出口热电偶(T1/T9) | ± 0.5 K | 73~573 K |
| T型热电偶(T2~T8) | ± 0.2 K | 113~373 K |
| 入口压力传感器 | ± 0.5% | 0~10 MPa |
| 出口压力传感器 | ± 0.5% | 0~1.5 MPa |
| 质量流量计 | ± 1.0% | 0~300 SLPM |
Table 2 Accuracy and range of instruments
| 测量设备 | 精度 | 量程 |
|---|---|---|
| 入/出口热电偶(T1/T9) | ± 0.5 K | 73~573 K |
| T型热电偶(T2~T8) | ± 0.2 K | 113~373 K |
| 入口压力传感器 | ± 0.5% | 0~10 MPa |
| 出口压力传感器 | ± 0.5% | 0~1.5 MPa |
| 质量流量计 | ± 1.0% | 0~300 SLPM |
| [1] | 赵帮健, 张涛, 谭军, 等. 2 K温区两级节流JT制冷机热力学分析[J]. 工程热物理学报, 2023, 44(5): 1147-1153. |
| Zhao B J, Zhang T, Tan J, et al. Thermodynamic analysis and experimental study of the two-stage throttling JT cryocooler at 2 K temperature zone[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1147-1153. | |
| [2] | Fredrickson K, Nellis G, Klein S. A design method for mixed gas Joule–Thomson refrigeration cryosurgical probes[J]. International Journal of Refrigeration, 2006, 29(5): 700-715. |
| [3] | Sugita H, Sato Y, Nakagawa T, et al. Cryogenic system design of the next generation infrared space telescope SPICA[J]. Cryogenics, 2010, 50(9): 566-571. |
| [4] | Lee C, Baek S, Lee J, et al. Development of a closed-loop J-T cryoablation device with a long cooling area and multiple expansion parts[J]. Medical Engineering & Physics, 2014, 36(11): 1464-1472. |
| [5] | 张永壮, 韩蓬磊, 饶启超, 等. 制冷工质压力对红外用波纹管J-T制冷器制冷性能的影响研究[J]. 红外, 2024, 45(7): 35-41. |
| Zhang Y Z, Han P L, Rao Q C, et al. Research on the influence of refrigerant pressure on the refrigeration performance of corrugated tube J-T cooler for infrared application[J]. Infrared, 2024, 45(7): 35-41. | |
| [6] | 姜博仁, 武卫东. 低温冷冻刀降温方法综述及展望[J]. 低温与超导, 2012, 40(12): 13-17. |
| Jiang B R, Wu W D. Summary and prospect of crygenic knife's cooling methods[J]. Cryogenics & Superconductivity, 2012, 40(12): 13-17. | |
| [7] | Little W A. Microminiature refrigeration: small is better[J]. Physica B+C, 1982, 109: 2001-2009. |
| [8] | Lerou P P P M, Jansen H, Venhorst G C F, et al. Progress in micro Joule-Thomson cooling at twente university[C]//Cryocoolers 13. Boston, MA: Springer US, 2005: 489-496. |
| [9] | Cao H S, Mudaliar A V, Derking J H, et al. Design and optimization of a two-stage 28 K Joule–Thomson microcooler[J]. Cryogenics, 2012, 52(1): 51-57. |
| [10] | Cao H S, Vanapalli S, Holland H J, et al. A micromachined Joule-Thomson cryogenic cooler with parallel two-stage expansion[J]. International Journal of Refrigeration, 2016, 69: 223-231. |
| [11] | 杜艳君, 陈双涛, 李家鹏, 等. 微通道节流制冷器热力学仿真及结构优化[J]. 低温工程, 2018(6): 8-13. |
| Du Y J, Chen S T, Li J P, et al. Thermodynamic simulation and structure optimization of microchannel throttling cooler[J]. Cryogenics, 2018(6): 8-13. | |
| [12] | 佘海龙, 崔晓钰, 耿晖, 等. 微小型焦-汤效应节流制冷器发展与研究[J]. 制冷学报, 2019, 40(3): 8-23. |
| She H L, Cui X Y, Geng H, et al. Review on micro-sized Joule-Thomson effect throttle cryocooler[J]. Journal of Refrigeration, 2019, 40(3): 8-23. | |
| [13] | Mikulin E, Shevich J, Danilenko T, et al. The miniature Joule-Thomson refrigerator[J]. Cryogenics, 1992, 32: 17-19. |
| [14] | 王文卿, 崔晓钰, 耿晖, 等. 氩气微槽道焦-汤效应制冷器实验研究[J]. 低温工程, 2016(5): 46-50. |
| Wang W Q, Cui X Y, Geng H, et al. Experimental study of rectangle micro channel Joule-Thomson cryocooler with argon[J]. Cryogenics, 2016(5): 46-50. | |
| [15] | Narayanan S P, Venkatarathnam G. Analysis of performance of heat exchangers used in practical micro miniature refrigerators[J]. Cryogenics, 1999, 39(6): 517-527. |
| [16] | Gong M Q, Wu J F, Yan B, et al. Study on a miniature mixed-gases Joule-Thomson cooler driven by an oil-lubricated mini-compressor for 120 K temperature ranges[J]. Physics Procedia, 2015, 67: 405-410. |
| [17] | Xiong L Y, Kaiser G, Binneberg A. Theoretical study on a miniature Joule-Thomson & bernoulli cryocooler[J]. Cryogenics, 2004, 44(11): 801-807. |
| [18] | Baik Y J, Jeon S, Kim B, et al. Heat transfer performance of wavy-channeled PCHEs and the effects of waviness factors[J]. International Journal of Heat and Mass Transfer, 2017, 114: 809-815. |
| [19] | Tsuzuki N, Kato Y, Ishiduka T. High performance printed circuit heat exchanger[J]. Applied Thermal Engineering, 2007, 27(10): 1702-1707. |
| [20] | Tsuzuki N, KATOY, NIKITIN K, et al. Advanced microchannel heat exchanger with S-shaped fins[J]. Journal of Nuclear Science and Technology, 2009, 46(5): 403-412. |
| [21] | Kim D E, Kim M H, Cha J E, et al. Numerical investigation on thermal–hydraulic performance of new printed circuit heat exchanger model[J]. Nuclear Engineering and Design, 2008, 238(12): 3269-3276. |
| [22] | Maytal B Z. Hampson's type cryocoolers with distributed Joule–Thomson effect for mixed refrigerants closed cycle[J]. Cryogenics, 2014, 61: 92-96. |
| [23] | Jeong S, Park C, Kim K. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device[J]. Journal of Physics: Conference Series, 2018, 969: 012084. |
| [24] | Geng H, Cui X Y, She H L, et al. Characterization of a distributed Joule-Thomson effect cooler with pillars[J]. International Journal of Energy Research, 2021, 45(9): 13965-13977. |
| [25] | Derek J, Jinoop A N, Paul C P, et al. Investigating the effect of geometry on micro-channel heat exchangers using CFD analysis[C]// Advances in Fluid and Thermal Engineering. Singapore: Springer Singapore, 2019: 401-408. |
| [26] | Lee S M, Kim K Y. Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations[J]. Heat and Mass Transfer, 2013, 49(7): 1021-1028. |
| [27] | Aneesh A M, Sharma A, Srivastava A, et al. Effects of wavy channel configurations on thermal-hydraulic characteristics of Printed Circuit Heat Exchanger (PCHE)[J]. International Journal of Heat and Mass Transfer, 2018, 118: 304-315. |
| [28] | Gupta R, Geyer P E, Fletcher D F, et al. Thermohydraulic performance of a periodic trapezoidal channel with a triangular cross-section[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 2925-2929. |
| [29] | Oh C H, Kim E S, Patterson M. Design option of heat exchanger for the next generation nuclear plant[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(3): 032903. |
| [30] | 胡芳. 印刷电路板式换热器流动与传热特性研究[D]. 南京: 南京航空航天大学, 2012. |
| Hu F. Study on flow and heat transfer characteristics of printed circuit plate heat exchanger[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. | |
| [31] | Krasnoshchekov E A, Kuraeva I V, Protopopov V S. Local heat transfer of carbon dioxide at supercritical pressure under cooling conditions[J]. Teplofizika Vysokikh Temperatur, 1970, 7(5): 922-930. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||