CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 3905-3914.DOI: 10.11949/0438-1157.20250070
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Lu LIU(
), Ying YANG, Haowen YANG, Tai WANG, Teng WANG, Xinyu DONG, Run YAN(
)
Received:2025-01-16
Revised:2025-03-06
Online:2025-09-17
Published:2025-08-25
Contact:
Run YAN
刘璐(
), 杨莹, 杨浩文, 王太, 王腾, 董新宇, 闫润(
)
通讯作者:
闫润
作者简介:刘璐(1984—),女,博士,教授,luliu@ncepu.edu.cn
基金资助:CLC Number:
Lu LIU, Ying YANG, Haowen YANG, Tai WANG, Teng WANG, Xinyu DONG, Run YAN. Experimental investigations of condensation droplet shedding characteristics on star-shaped hydrophobic-hydrophilic hybrid surfaces[J]. CIESC Journal, 2025, 76(8): 3905-3914.
刘璐, 杨莹, 杨浩文, 王太, 王腾, 董新宇, 闫润. 星形亲水区组合表面冷凝液滴脱落特性实验研究[J]. 化工学报, 2025, 76(8): 3905-3914.
Add to citation manager EndNote|Ris|BibTeX
| 图案类型 | 内切圆半径/mm | 外切圆半径/mm | 亲水区总面积占比/% |
|---|---|---|---|
| 亲水表面 | — | — | 100 |
| 疏水表面 | — | — | 0 |
| 四角星组合表面 | 1.13 | 3.20 | 20 |
| 五角星组合表面 | 1.18 | 3.09 | 20 |
| 六角星组合表面 | 1.20 | 3.00 | 20 |
Table 1 Hydrophilic, hydrophobic, hydrophobic-hydrophilic hybrid testing surfaces parameters
| 图案类型 | 内切圆半径/mm | 外切圆半径/mm | 亲水区总面积占比/% |
|---|---|---|---|
| 亲水表面 | — | — | 100 |
| 疏水表面 | — | — | 0 |
| 四角星组合表面 | 1.13 | 3.20 | 20 |
| 五角星组合表面 | 1.18 | 3.09 | 20 |
| 六角星组合表面 | 1.20 | 3.00 | 20 |
Fig.2 Scanning electron microscope (SEM) of hydrophobic-hydrophilic hybrid surfaces hydrophobic regions (a), hydrophilic regions (b) and relevant contact angle measurements
Fig.4 Visualization of droplet merging from hydrophobic to hydrophilic regions on four-point (a), five-point (b), six-point star (c) hybrid surfaces(red dotted regions)
Fig.6 Four-point star ellipse vertical (a) and tilted (b), five-point star ellipse vertical (c) and tilted (d), six-point star ellipse vertical (e) and tilted (f) conditions with real test figure marks
Fig.11 Area distribution diagram of post-droplet-shedding residual condensate area on four-star (a), five-star (b) and six-star (c) hydrophilic regions
| [8] | 崔晨乙, 袁甲, 齐宝金, 等. 非均匀润湿表面强化冷凝换热研究[J]. 化学工程, 2020, 48(1): 40-46. |
| Cui C Y, Yuan J, Qi B J, et al. Study on enhanced condensation heat transfer with non-uniform wetting surface[J]. Chemical Engineering (China), 2020, 48(1): 40-46. | |
| [9] | 朱丹丹, 许雄文, 刘金平, 等. 混合润湿性图案化铜基表面冷凝换热性能研究[J]. 化工学报, 2021, 72(5): 2528-2546. |
| Zhu D D, Xu X W, Liu J P, et al. Characteristic of condensation heat transfer of hybrid wettable patterned copper surfaces[J]. CIESC Journal, 2021, 72(5): 2528-2546. | |
| [10] | 刘灯辉, 黄志, 冯妍卉, 等. 超亲水-超疏水组合壁面冷凝性能研究[J]. 工程热物理学报, 2021, 42(2): 475-480. |
| Liu D H, Huang Z, Feng Y H, et al. Vapor condensation on hybrid superhydrophilic/superhydrophobic surfaces[J]. Journal of Engineering Thermophysics, 2021, 42(2): 475-480. | |
| [11] | 张凯, 陆勇俊, 王峰会. 表面能梯度驱动下纳米水滴在不同微结构表面上的运动[J]. 物理学报, 2015, 64(6): 272-277. |
| Zhang K, Lu Y J, Wang F H. Motion of the nanodroplets driven by energy gradient on surfaces with different microstructures[J]. Acta Physica Sinica, 2015, 64(6): 272-277. | |
| [12] | Feng W, Bhushan B. Multistep wettability gradient in bioinspired triangular patterns for water condensation and transport[J]. Journal of Colloid and Interface Science, 2020, 560: 866-873. |
| [13] | Zhuang J Y, Zheng J Y. Directional droplet transport behavior on gradient wettability wedge track with extreme wettability contrast[J]. Chemical Engineering Science, 2024, 283: 119382. |
| [14] | 彭本利, 周勇, 生文龙, 等. 组合表面高不凝气蒸汽冷凝的数值研究[J]. 工程热物理学报, 2023, 44(7): 1973-1981. |
| Peng B L, Zhou Y, Sheng W L, et al. Numerical study on steam condensation with high fraction of non-condensable gas on combined surfaces[J]. Journal of Engineering Thermophysics, 2023, 44(7): 1973-1981. | |
| [15] | 徐泽, 邓梓龙. 组合表面强化冷凝传热研究综述[J]. 建筑热能通风空调, 2022, 41(3): 43-47, 33. |
| Xu Z, Deng Z L. Review on hybrid surfaces for condensation heat transfer enhancement[J]. Building Energy & Environment, 2022, 41(3): 43-47, 33. | |
| [16] | 孔庆盼, 纪献兵, 周儒鸿, 等. 亲-疏水两层结构表面强化蒸汽冷凝传热[J]. 浙江大学学报(工学版), 2020, 54(5): 1022-1028, 1038. |
| Kong Q P, Ji X B, Zhou R H, et al. Enhancement of steam condensation heat transfer on hydrophilic-hydrophobic two-layer structure surface[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(5): 1022-1028, 1038. | |
| [17] | 温荣福, 杜宾港, 杨思艳, 等. 蒸气冷凝传热强化研究进展[J]. 清华大学学报(自然科学版), 2021, 61(12): 1353-1370. |
| Wen R F, Du B G, Yang S Y, et al. Advances in condensation heat transfer enhancement[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12): 1353-1370. | |
| [18] | Ji X B, Zhou D D, Dai C, et al. Dropwise condensation heat transfer on superhydrophilic-hydrophobic network hybrid surface[J]. International Journal of Heat and Mass Transfer, 2019, 132: 52-67. |
| [19] | Song D, Bhushan B. Enhancement of water collection and transport in bioinspired triangular patterns from combined fog and condensation[J]. Journal of Colloid and Interface Science, 2019, 557: 528-536. |
| [20] | Yi Q J, Tian M C, Yan W J, et al. Visualization study of the influence of non-condensable gas on steam condensation heat transfer[J]. Applied Thermal Engineering, 2016, 106: 13-21. |
| [21] | Varanasi K K, Deng T. Controlling condensation of water using hybrid hydrophobic-hydrophilic surfaces[C]//2010 14th International Heat Transfer Conference. Washington, DC, USA, 2011: 447-452. |
| [22] | Vemuri S, Kim K J, Wood B D, et al. Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan[J]. Applied Thermal Engineering, 2006, 26(4): 421-429. |
| [23] | Foshat S, Jafarpur K, Yaghoubi M. Condensation heat transfer of a hybrid hydrophilic-hydrophobic surface with different arrangements[J]. Chemical Engineering Communications, 2023, 210(4): 490-503. |
| [24] | Wang H, Nguyen Q, Kwon J W, et al. Condensation and wetting behavior on hybrid superhydrophobic and superhydrophilic copper surfaces[J]. Journal of Heat Transfer, 2020, 142(4): 041601. |
| [25] | Zheng S F, Gross U, Wang X D. Dropwise condensation: from fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces[J]. Advances in Colloid and Interface Science, 2021, 295: 102503. |
| [1] | Peng B L, Ma X H, Lan Z, et al. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: droplet sizes effect[J]. International Journal of Heat and Mass Transfer, 2014, 77: 785-794. |
| [2] | Najah M, Calbrix R, Mahendra-Wijaya I P, et al. Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms[J]. Chemistry & Biology, 2014, 21(12): 1722-1732. |
| [3] | Chen X M, Wu J, Ma R Y, et al. Nanograssed micropyramidal architectures for continuous dropwise condensation[J]. Advanced Functional Materials, 2011, 21(24): 4617-4623. |
| [4] | Orejon D, Shardt O, Gunda N S K, et al. Simultaneous dropwise and filmwise condensation on hydrophilic microstructured surfaces[J]. International Journal of Heat and Mass Transfer, 2017, 114: 187-197. |
| [5] | Boreyko J B, Chen C H. Vapor chambers with jumping-drop liquid return from superhydrophobic condensers[J]. International Journal of Heat and Mass Transfer, 2013, 61: 409-418. |
| [6] | Dietz C, Rykaczewski K, Fedorov A G, et al. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation[J]. Applied Physics Letters, 2010, 97(3): 033104. |
| [7] | 刁红梅, 闫向阳, 葛明慧, 等. 流速对含高浓度不凝气的蒸汽冷凝特性的影响[J]. 工程热物理学报, 2024, 45(4): 1150-1155. |
| Diao H M, Yan X Y, Ge M H, et al. Effect of flow velocity on condensation characteristics of vapors containing high concentrations of non-condensable gases[J]. Journal of Engineering Thermophysics, 2024, 45(4): 1150-1155. | |
| [26] | Zhang F, Guo Z G. Bioinspired materials for water-harvesting: focusing on microstructure designs and the improvement of sustainability[J]. Materials Advances, 2020, 1(8): 2592-2613. |
| [27] | Liu W J, Fan P X, Cai M Y, et al. An integrative bioinspired venation network with ultra-contrasting wettability for large-scale strongly self-driven and efficient water collection[J]. Nanoscale, 2019, 11(18): 8940-8949. |
| [28] | Alwazzan M, Egab K, Peng B L, et al. Condensation on hybrid-patterned copper tubes (Ⅰ): Characterization of condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 112: 991-1004. |
| [29] | Chatterjee A, Derby M M, Peles Y, et al. Enhancement of condensation heat transfer with patterned surfaces[J]. International Journal of Heat and Mass Transfer, 2014, 71: 675-681. |
| [30] | Hou K Y, Li X Y, Li Q, et al. Tunable wetting patterns on superhydrophilic/superhydrophobic hybrid surfaces for enhanced dew-harvesting efficacy[J]. Advanced Materials Interfaces, 2020, 7(2): 1901683. |
| [31] | Yang K S, Lin K H, Tu C W, et al. Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1032-1041. |
| [32] | Bai H, Wang L, Ju J, et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns[J]. Advanced Materials, 2014, 26(29): 5025-5030. |
| [33] | Bai H Y, Zhao T H, Wang X S, et al. Cactus kirigami for efficient fog harvesting: simplifying a 3D cactus into 2D paper art[J]. Journal of Materials Chemistry A, 2020, 8(27): 13452-13458. |
| [34] | Peng B L, Ma X H, Lan Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83: 27-38. |
| [35] | Yuan L, Chen X M, Maganty S, et al. Enhancing the oxidation resistance of copper by using sandblasted copper surfaces[J]. Applied Surface Science, 2015, 357: 2160-2168. |
| [36] | Lan Z, Ma X H, Wang S F, et al. Effects of surface free energy and nanostructures on dropwise condensation[J]. Chemical Engineering Journal, 2010, 156(3): 546-552. |
| [37] | Xu B, Chen Z Q. Molecular dynamics study of water vapor condensation on a composite wedge-shaped surface with multi wettability gradients[J]. International Communications in Heat and Mass Transfer, 2019, 105: 65-72. |
| [38] | Liu L Y, Xie Z, Wen L F, et al. Efficient collection and directional transport of condensate on superhydrophilic-hydrophobic surfaces with bioinspired hierarchical wedge-shaped channels[J]. Surfaces and Interfaces, 2024, 55: 105473. |
| [39] | Tang Y, Yang X L, Li Y M, et al. Design of hybrid superwetting surfaces with self-driven droplet transport feature for enhanced condensation[J]. Advanced Materials Interfaces, 2021, 8(13): 2100284. |
| [40] | Mohamed M A, Ahmed S A, Emeara M S, et al. Experimental study for enhancing condensation on large-scale surface using hybrid hydrophilic-hydrophobic patterns[J]. Case Studies in Thermal Engineering, 2023, 45: 102984. |
| [41] | Abràmoff M D, Magalhães P J, Ram S J. Image processing with ImageJ[J]. Biophotonics international, 2004, 11(7): 36-42. |
| [42] | Wu Y L, Zheng J W, Muneeshwaran M, et al. Moist air condensation heat transfer enhancement via superhydrophobicity[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121973. |
| [1] | Xianchao REN, Yaxiu GU, Shaobin DUAN, Wenzhu JIA, Hanlin LI. Experimental study on heat and mass transfer performance of elliptical tube-fin evaporative condenser [J]. CIESC Journal, 2025, 76(S1): 75-83. |
| [2] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [3] | Linhui YUAN, Yu WANG. Heat dissipation performance of single server immersion jet liquid cooling system [J]. CIESC Journal, 2025, 76(S1): 160-169. |
| [4] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [5] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [6] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [7] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [8] | Hongxin YU, Ningbo WANG, Yanhua GUO, Shuangquan SHAO. Numerical investigation on the flow and heat transfer characteristics of plate heat exchanger in dynamic ice storage system [J]. CIESC Journal, 2025, 76(S1): 106-113. |
| [9] | Wei SU, Dahai ZHAO, Xu JIN, Zhongyan LIU, Jing LI, Xiaosong ZHANG. Delaying condensation frosting using biphilic surfaces coupled with spatial control of liquid desiccant [J]. CIESC Journal, 2025, 76(S1): 140-151. |
| [10] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [11] | Hailong SHE, Guangzhong HU, Xiaoyu CUI, Zhongbin LIU, Di PENG, Hang LI. Performance study on layered microchannel distributed throttling cryocooler with different working fluids [J]. CIESC Journal, 2025, 76(8): 4017-4029. |
| [12] | Linkai WU, Zhimin LIN, Liangbi WANG. Improvement and numerical validation of quasi-steady-state frosting model based on thermal and mass transfer effect [J]. CIESC Journal, 2025, 76(8): 4004-4016. |
| [13] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [14] | Xiaojiang LIANG, Weiwei CHEN, Jianan LUO, Haotian FEI, Xuelei YE, Wenhao LI, Yong NIE. Dispersion characteristics of charged bubbles in an electric dispersion tubular packed bed [J]. CIESC Journal, 2025, 76(8): 3915-3931. |
| [15] | Luyuan GONG, Zhenglong GUO, Denghui ZHAO, Yali GUO, Jian ZHOU, Qianqian HAN, Shengqiang SHEN. Study on heat transfer and dynamics character of condensation on different hydrophobic surface [J]. CIESC Journal, 2025, 76(8): 3932-3943. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||