CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4670-4682.DOI: 10.11949/0438-1157.20250261
• Special Column: Modeling and Simulation in Process Engineering • Previous Articles Next Articles
Jie WANG(
), Qucheng LIN(
), Xianming ZHANG
Received:2025-03-17
Revised:2025-04-19
Online:2025-10-23
Published:2025-09-25
Contact:
Qucheng LIN
通讯作者:
林渠成
作者简介:王杰(1997—),男,硕士研究生,jiew102@163.com
基金资助:CLC Number:
Jie WANG, Qucheng LIN, Xianming ZHANG. Global optimization of mixed gas multistage membrane separation system based on decomposition algorithm[J]. CIESC Journal, 2025, 76(9): 4670-4682.
王杰, 林渠成, 张先明. 基于分解算法的混合气体多级膜分离系统全局优化[J]. 化工学报, 2025, 76(9): 4670-4682.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 |
|---|---|
| 初始流量/(kmol/h) | 36 |
| 进料压力/MPa | 3.500 |
| 渗透压力/MPa | 0.105 |
| 温度/K | 313.15 |
| CO2纯度/% | 2 |
| CH4回收率/% | 90 |
| 进料组成/%(摩尔分数) | CO2: 19, CH4: 73,C2+: 7, H2S: 1 |
| 渗透率/(kmol/(m2·MPa·h)) | 0.10656/0.005328/0.0021312/0.085248 |
Table 1 Related parameters of example 1
| 参数 | 数值 |
|---|---|
| 初始流量/(kmol/h) | 36 |
| 进料压力/MPa | 3.500 |
| 渗透压力/MPa | 0.105 |
| 温度/K | 313.15 |
| CO2纯度/% | 2 |
| CH4回收率/% | 90 |
| 进料组成/%(摩尔分数) | CO2: 19, CH4: 73,C2+: 7, H2S: 1 |
| 渗透率/(kmol/(m2·MPa·h)) | 0.10656/0.005328/0.0021312/0.085248 |
| 参数 | 描述 | 数值 | 参数 | 描述 | 数值 |
|---|---|---|---|---|---|
| 压缩机成本/(USD/kW) | 1000 | 原始天然气成本/(USD/1000 m3) | 35 | ||
| 固定成本的年化因子/% | 27 | 营运资本比率/% | 10 | ||
| 天然气总热值/(MJ/m3) | 43 | 膜使用寿命/a | 3 | ||
| 膜成本/(USD/m2) | 200 | 年工作时间/(d/a) | 300 | ||
| 膜更换费用/(USD/m2) | 90 | 压缩机效率/% | 70 | ||
| 维修率/(%/a) | 5 |
Table 2 Objective function-related parameters of Example 1
| 参数 | 描述 | 数值 | 参数 | 描述 | 数值 |
|---|---|---|---|---|---|
| 压缩机成本/(USD/kW) | 1000 | 原始天然气成本/(USD/1000 m3) | 35 | ||
| 固定成本的年化因子/% | 27 | 营运资本比率/% | 10 | ||
| 天然气总热值/(MJ/m3) | 43 | 膜使用寿命/a | 3 | ||
| 膜成本/(USD/m2) | 200 | 年工作时间/(d/a) | 300 | ||
| 膜更换费用/(USD/m2) | 90 | 压缩机效率/% | 70 | ||
| 维修率/(%/a) | 5 |
| 项目 | Qi和Henson[ | Ramírez-Santos等[ | Taifan和Maravelias[ | 本研究 |
|---|---|---|---|---|
| 第一级膜面积/m2 | 182.75 | 127.65 | 140.06 | 174.75 |
| 第二级膜面积/m2 | 197.92 | 181.08 | 151.40 | 111.58 |
| 第三级膜面积/m2 | 13.33 | 14.00 | 10.63 | 6.00 |
| 总膜面积/m2 | 394.00 | 322.73 | 302.09 | 292.33 |
| 压缩机功率/kW | 12.61 | 12.87 | 10.66 | 7.31 |
| CH4纯度/% | 88.71 | 89.09 | 88.84 | 88.75 |
| 年总成本/(USD/1000 m3) | 10.971 | 9.095 | 8.501 | 7.876 |
| 求解时间/s | — | — | 1185 | 698 |
Table 3 Optimization results and literature comparison of Example 1
| 项目 | Qi和Henson[ | Ramírez-Santos等[ | Taifan和Maravelias[ | 本研究 |
|---|---|---|---|---|
| 第一级膜面积/m2 | 182.75 | 127.65 | 140.06 | 174.75 |
| 第二级膜面积/m2 | 197.92 | 181.08 | 151.40 | 111.58 |
| 第三级膜面积/m2 | 13.33 | 14.00 | 10.63 | 6.00 |
| 总膜面积/m2 | 394.00 | 322.73 | 302.09 | 292.33 |
| 压缩机功率/kW | 12.61 | 12.87 | 10.66 | 7.31 |
| CH4纯度/% | 88.71 | 89.09 | 88.84 | 88.75 |
| 年总成本/(USD/1000 m3) | 10.971 | 9.095 | 8.501 | 7.876 |
| 求解时间/s | — | — | 1185 | 698 |
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 38.24 | 29.53 | 8.71 | 26.65 | 2.88 | 2.24 | 0.64 |
| PRO Ⅱ | 38.24 | 29.46 | 8.78 | 26.59 | 2.87 | 2.24 | 0.63 |
| 误差/% | 0 | 0.24 | -0.80 | 0.23 | 0.35 | 0 | 1.59 |
Table 4 Comparison of optimization results of Example 1 with simulation results of PRO Ⅱ
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 38.24 | 29.53 | 8.71 | 26.65 | 2.88 | 2.24 | 0.64 |
| PRO Ⅱ | 38.24 | 29.46 | 8.78 | 26.59 | 2.87 | 2.24 | 0.63 |
| 误差/% | 0 | 0.24 | -0.80 | 0.23 | 0.35 | 0 | 1.59 |
| 参数 | 数值 |
|---|---|
| 初始流量/(mol/s) | 1240.0 |
| 初始进料流股压力/bar | 1.00 |
| 温度/K | 308.15 |
| N2纯度/% | 1 |
| CO2回收率/% | 90 |
| 进料组成/%(摩尔分数) | CO2: 23.2, CO: 22.6,N2: 50.3, H2: 3.9 |
| 渗透率/(mol/(m2·bar·s)) | 1000/20/15/85 |
Table 5 Related parameters of Example 2
| 参数 | 数值 |
|---|---|
| 初始流量/(mol/s) | 1240.0 |
| 初始进料流股压力/bar | 1.00 |
| 温度/K | 308.15 |
| N2纯度/% | 1 |
| CO2回收率/% | 90 |
| 进料组成/%(摩尔分数) | CO2: 23.2, CO: 22.6,N2: 50.3, H2: 3.9 |
| 渗透率/(mol/(m2·bar·s)) | 1000/20/15/85 |
| 参数 | 描述 | 数值 | 参数 | 描述 | 数值 |
|---|---|---|---|---|---|
| 固定成本的年化因子/% | 8.54 | 压缩机材料因子 | 1.4 | ||
| 压缩机成本/EUR | 106 | 间接成本因素 | 1.8 | ||
| 真空泵成本因子/(EUR/kW) | 1500 | 膜每年使用时间/(h/year) | 8322 | ||
| 电力成本/(EUR/(kW·h)) | 0.044 | 更新因子 | 1.42 | ||
| 膜成本/(EUR/m2) | 40 | 绝热比 | 1.36 | ||
| 基础框架成本/EUR | 286×103 | 压缩机等熵效率/% | 85 | ||
| 膜更换费用/(EUR/m2) | 25 | 真空泵等熵效率/% | 85 | ||
| CO2摩尔质量/(g/mol) | 44.01 | 膜年更换率/% | 20 | ||
| 压缩机模块因子 | 2.72 | 机械效率/% | 95 |
Table 6 Objective function-related parameters of Example 2
| 参数 | 描述 | 数值 | 参数 | 描述 | 数值 |
|---|---|---|---|---|---|
| 固定成本的年化因子/% | 8.54 | 压缩机材料因子 | 1.4 | ||
| 压缩机成本/EUR | 106 | 间接成本因素 | 1.8 | ||
| 真空泵成本因子/(EUR/kW) | 1500 | 膜每年使用时间/(h/year) | 8322 | ||
| 电力成本/(EUR/(kW·h)) | 0.044 | 更新因子 | 1.42 | ||
| 膜成本/(EUR/m2) | 40 | 绝热比 | 1.36 | ||
| 基础框架成本/EUR | 286×103 | 压缩机等熵效率/% | 85 | ||
| 膜更换费用/(EUR/m2) | 25 | 真空泵等熵效率/% | 85 | ||
| CO2摩尔质量/(g/mol) | 44.01 | 膜年更换率/% | 20 | ||
| 压缩机模块因子 | 2.72 | 机械效率/% | 95 |
| 项目 | Ramírez-Santos等[ | 恒压 | 变压 |
|---|---|---|---|
| 第一级膜面积/ m2 | 105192 | 92072 | 106672 |
| 第二级膜面积/ m2 | 3058 | 7333 | 7476 |
| 第三级膜面积/ m2 | 7229 | 3774 | 4490 |
| 总膜面积/ m2 | 115479 | 103179 | 118638 |
| 进料压力/bar | 2.29 | 2.29 | 2.14 |
| 第一级渗透压力/bar | 0.20 | 0.20 | 0.20 |
| 第二级渗透压力/bar | 0.71 | 0.71 | 0.70 |
| 第三级渗透压力/bar | 0.43 | 0.43 | 0.41 |
| 总功率/MW | — | 7.67 | 7.53 |
| 年总成本/(EUR/t) | 28.9 | 27.0 | 26.9 |
| 求解时间/s | — | 16129 | 30172 |
Table 7 Otimization results and literature comparison of Example 2
| 项目 | Ramírez-Santos等[ | 恒压 | 变压 |
|---|---|---|---|
| 第一级膜面积/ m2 | 105192 | 92072 | 106672 |
| 第二级膜面积/ m2 | 3058 | 7333 | 7476 |
| 第三级膜面积/ m2 | 7229 | 3774 | 4490 |
| 总膜面积/ m2 | 115479 | 103179 | 118638 |
| 进料压力/bar | 2.29 | 2.29 | 2.14 |
| 第一级渗透压力/bar | 0.20 | 0.20 | 0.20 |
| 第二级渗透压力/bar | 0.71 | 0.71 | 0.70 |
| 第三级渗透压力/bar | 0.43 | 0.43 | 0.41 |
| 总功率/MW | — | 7.67 | 7.53 |
| 年总成本/(EUR/t) | 28.9 | 27.0 | 26.9 |
| 求解时间/s | — | 16129 | 30172 |
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 1398 | 971 | 427 | 235 | 192 | 158 | 77.1 |
| PRO Ⅱ | 1404 | 975 | 429 | 240 | 189 | 164 | 75.6 |
| 误差/% | -0.4 | -0.4 | -0.5 | -2.1 | 1.6 | -3.7 | 2.0 |
Table 8 Comparison of optimization results of Example 2 under constant pressure with simulation results of PRO Ⅱ
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 1398 | 971 | 427 | 235 | 192 | 158 | 77.1 |
| PRO Ⅱ | 1404 | 975 | 429 | 240 | 189 | 164 | 75.6 |
| 误差/% | -0.4 | -0.4 | -0.5 | -2.1 | 1.6 | -3.7 | 2.0 |
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 1417 | 971 | 446 | 269 | 177 | 177 | 92.1 |
| PRO Ⅱ | 1424 | 975 | 449 | 275 | 174 | 184 | 90.8 |
| 误差/% | -0.5 | -0.4 | -0.7 | -2.2 | 1.7 | -3.8 | 1.4 |
Table 9 Comparison of optimization results of Example 2 under variable pressure with simulation results of PRO Ⅱ
| 项目 | |||||||
|---|---|---|---|---|---|---|---|
| 本研究 | 1417 | 971 | 446 | 269 | 177 | 177 | 92.1 |
| PRO Ⅱ | 1424 | 975 | 449 | 275 | 174 | 184 | 90.8 |
| 误差/% | -0.5 | -0.4 | -0.7 | -2.2 | 1.7 | -3.8 | 1.4 |
| [1] | Godin J, Liu W Z, Ren S, et al. Advances in recovery and utilization of carbon dioxide: a brief review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105644. |
| [2] | Yu Y F, Yang X, Chen J, et al. Spontaneous and rapid self-healing ionogels membrane based on dual dynamic crosslinking networks strategy for high-efficiency CO2 separation[J]. Separation and Purification Technology, 2025, 362: 131916. |
| [3] | NOAA Global Monitoring Laboratory. Trends in CO2 - NOAA Global Monitoring Laboratory [EB/OL]. (2024-07-15) [2025-03-14]. . |
| [4] | IEA. CO2 emissions in 2023[R/OL]. IEA: Paris, 2024. . |
| [5] | Li G Q, Kujawa J, Knozowska K, et al. The advancements in mixed matrix membranes containing functionalized MOFs and 2D materials for CO2/N2 separation and CO2/CH4 separation[J]. Carbon Capture Science & Technology, 2024, 13: 100267. |
| [6] | Faruque Hasan M M, Zantye M S, Kazi M K. Challenges and opportunities in carbon capture, utilization and storage: a process systems engineering perspective[J]. Computers & Chemical Engineering, 2022, 166: 107925. |
| [7] | Yousef A M, El-Maghlany W M, Eldrainy Y A, et al. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture[J]. Energy, 2018, 156: 328-351. |
| [8] | Ji L, Zhang L, Zheng X, et al. Simultaneous CO2 absorption, mineralisation and carbonate crystallisation promoted by amines in a single process[J]. Journal of CO2 Utilization, 2021, 51: 101653. |
| [9] | Abd A A, Othman M R, Naji S Z, et al. Methane enrichment in biogas mixture using pressure swing adsorption: process fundamental and design parameters[J]. Materials Today Sustainability, 2021, 11: 100063. |
| [10] | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
| [11] | Li G Q, Kujawski W, Válek R, et al. A review - the development of hollow fibre membranes for gas separation processes[J]. International Journal of Greenhouse Gas Control, 2021, 104: 103195. |
| [12] | Hong T, Li Y, Wang S J, et al. Polyurethane-based gas separation membranes: a review and perspectives[J]. Separation and Purification Technology, 2022, 301: 122067. |
| [13] | Pasichnyk M, Stanovsky P, Polezhaev P, et al. Membrane technology for challenging separations: removal of CO2, SO2 and NO x from flue and waste gases[J]. Separation and Purification Technology, 2023, 323: 124436. |
| [14] | Verma H, Jassby D, Maravelias C T. Superstructure-based optimization of membrane network systems for multicomponent liquid mixture separation[J]. Journal of Membrane Science, 2025, 717: 123574. |
| [15] | Samei M, Raisi A. Multi-stage gas separation process for separation of carbon dioxide from methane: modeling, simulation, and economic analysis[J]. Chemical Engineering and Processing - Process Intensification, 2022, 170: 108676. |
| [16] | Lindqvist K, Roussanaly S, Anantharaman R. Multi-stage membrane processes for CO2 capture from cement industry[J]. Energy Procedia, 2014, 63: 6476-6483. |
| [17] | Qi R H, Henson M A. Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming[J]. Computers & Chemical Engineering, 2000, 24(12): 2719-2737. |
| [18] | Arias A M, Mussati M C, Mores P L, et al. Optimization of multi-stage membrane systems for CO2 capture from flue gas[J]. International Journal of Greenhouse Gas Control, 2016, 53: 371-390. |
| [19] | Chavez Velasco J A, Tumbalam Gooty R, Tawarmalani M, et al. Optimal design of membrane cascades for gaseous and liquid mixtures via MINLP[J]. Journal of Membrane Science, 2021, 636: 119514. |
| [20] | Ohs B, Lohaus J, Wessling M. Optimization of membrane based nitrogen removal from natural gas[J]. Journal of Membrane Science, 2016, 498: 291-301. |
| [21] | Gilassi S, Taghavi S M, Rodrigue D, et al. Optimizing membrane module for biogas separation[J]. International Journal of Greenhouse Gas Control, 2019, 83: 195-207. |
| [22] | Ramírez-Santos Á A, Bozorg M, Addis B, et al. Optimization of multistage membrane gas separation processes. Example of application to CO2 capture from blast furnace gas[J]. Journal of Membrane Science, 2018, 566: 346-366. |
| [23] | Chiwaye N, Majozi T, Daramola M O. On optimisation of N2 and CO2-selective hybrid membrane process systems for post-combustion CO2 capture from coal-fired power plants[J]. Journal of Membrane Science, 2021, 638: 119691. |
| [24] | Taifan G S P, Maravelias C T. Generalized optimization-based synthesis of membrane systems for multicomponent gas mixture separation[J]. Chemical Engineering Science, 2022, 252: 117482. |
| [25] | Taifan G S P, Maravelias C T. Integrated membrane material design and system synthesis[J]. Chemical Engineering Science, 2023, 269: 118406. |
| [26] | Chen Z W, Tawarmalani M, Agrawal R. Global minimization of power consumptions for multicomponent gas membrane cascades[J]. Computers & Chemical Engineering, 2024, 180: 108464. |
| [27] | Bocciardo D, Ferrari M C, Brandani S. Modelling and multi-stage design of membrane processes applied to carbon capture in coal-fired power plants[J]. Energy Procedia, 2013, 37: 932-940. |
| [28] | Uppaluri R V S, Smith R, Linke P, et al. On the simultaneous optimization of pressure and layout for gas permeation membrane systems[J]. Journal of Membrane Science, 2006, 280(1/2): 832-848. |
| [29] | Liao Z W, Hu Y X, Wang J D, et al. Systematic design and optimization of a membrane-cryogenic hybrid system for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17186-17197. |
| [30] | Chang C L, Liao Z W, Costa A L H, et al. Globally optimal synthesis of heat exchanger networks. Part Ⅱ: non-minimal networks[J]. AIChE Journal, 2020, 66(7): e16264. |
| [31] | Merkel T C, Lin H Q, Wei X T, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes[J]. Journal of Membrane Science, 2010, 359(1/2): 126-139. |
| [32] | Yuan M Y, Narakornpijit K, Haghpanah R, et al. Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization[J]. Journal of Membrane Science, 2014, 465: 177-184. |
| [33] | Zhai H B, Rubin E S. Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants[J]. Environmental Science & Technology, 2013, 47(6): 3006-3014. |
| [34] | Zito P F, Brunetti A, Barbieri G. Multi-step membrane process for biogas upgrading[J]. Journal of Membrane Science, 2022, 652: 120454. |
| [1] | Ziqing ZANG, Xiuzhen LI, Yingying TAN, Xiaoqing LIU. Investigation on effect of fractionation on performance of two-stage separation-based auto-cascade refrigeration cycle [J]. CIESC Journal, 2025, 76(S1): 17-25. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [4] | Xingliang PEI, Cuiping YE, Yingli PEI, Wenying LI. Selective adsorption and separation of xylene isomers by alkali-modified MIL-53(Cr) [J]. CIESC Journal, 2025, 76(S1): 258-267. |
| [5] | Yinlong LI, Guoqiang LIU, Gang YAN. Perfromance assessment of auto-cascade cycle integrating fractionation and flash separation [J]. CIESC Journal, 2025, 76(S1): 26-35. |
| [6] | Wenlong LI, Cheng CHANG, Xiaolin WU, Zhongli JI. Research on liquid distribution characteristics and pressure drop evolution in oil-water coalescing filters [J]. CIESC Journal, 2025, 76(9): 4850-4861. |
| [7] | Yu WANG, Yingnan FENG, Tao WANG, Zhiping ZHAO. Constructing nano-composite nanofiltration membranes by in-situ growth: membrane preparation and application [J]. CIESC Journal, 2025, 76(9): 4723-4736. |
| [8] | Jianmin ZHANG, Meigui HE, Wanxin JIA, Jing ZHAO, Wanqin JIN. Poly(ethylene oxide)/crown ether blend membrane and performance for CO2 separation [J]. CIESC Journal, 2025, 76(9): 4862-4871. |
| [9] | Xu GUO, Jining JIA, Kejian YAO. Modeling of batch distillation process based on optimized CNN-BiLSTM neural network [J]. CIESC Journal, 2025, 76(9): 4613-4629. |
| [10] | Huiqin ZHANG, Hongjun ZHAO, Zhengjun FU, Li ZHUANG, Kai DONG, Tianzhi JIA, Xueli CAO, Shipeng SUN. Application of nanofiltration membrane in concentration of ionic rare earth leach solution [J]. CIESC Journal, 2025, 76(8): 4095-4107. |
| [11] | Zhihong CHEN, Jiawei WU, Xiaoling LOU, Junxian YUN. Recent advances in machine learning for biomanufacturing of chemicals [J]. CIESC Journal, 2025, 76(8): 3789-3804. |
| [12] | Minghu JIANG, Fan WANG, Lei XING, Lixin ZHAO, Xinya LI, Dingwei CHEN. Influence of gas-containing on flow field characteristics and separation performance in oil-water separation string [J]. CIESC Journal, 2025, 76(7): 3361-3372. |
| [13] | Zirui LI, Kai QI, Jun WANG, Guodong XIA. Molecular dynamics study of ion rejection process based on Janus nanochannel [J]. CIESC Journal, 2025, 76(7): 3531-3538. |
| [14] | Yuhang CHEN, Jinguo CHEN, Weiyi CHEN, Kang WANG, Hao ZHENG, Changliang HAN. Gas distribution performance and multi objective parameters optimization of submerged combustion vaporizer flue gas distributor [J]. CIESC Journal, 2025, 76(7): 3274-3285. |
| [15] | Zhao GAO, Xi WU, Dan XIA, Linzhou ZHANG. Development of thermodynamics and separation unit modules of petroleum refining molecular management platform [J]. CIESC Journal, 2025, 76(7): 3212-3225. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||