CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 209-217.DOI: 10.11949/j.issn.0438-1157.20150989

Previous Articles     Next Articles

Structure and hydrodynamics characteristics of fluids under nano-confinement

XU Junbo1, WANG Yuying1,2, YANG Chao1   

  1. 1 Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-06-25 Revised:2015-10-30 Online:2016-01-05 Published:2016-01-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21490584, 91534105, 21306199) and the National Basic Research Program of China (2013CB632601).

纳米受限流体的结构及流体动力学特性

徐俊波1, 汪宇莹1,2, 杨超1   

  1. 1 中国科学院过程工程研究所, 中国科学院绿色过程与工程重点实验室, 北京 100190;
    2 中国科学院大学, 北京 100049
  • 通讯作者: 杨超
  • 基金资助:

    国家自然科学基金项目(21490584,91534105,21306199);国家重点基础研究发展计划项目(2013CB632601)。

Abstract:

The fluids under nano-confinement show broad application prospect in membrane separation, mesoporous catalyst, etc., benefiting from the specific phenomena occurring at this small scale compared with that at macro scales. The layered and ordered structure of the fluids near the wall and its effect on the hydrodynamic characteristics of the fluids are the main differences from those at macro scales. The common rule of the molecules aggregation structure and the electric double-layer structure of fluids under nano-confinement, and their effects on the self-diffusion property and wall slip phenomenon are reviewed. The applicability of the macroscopic continuum theory in fluids under nano-confinement is discussed. Finally, future development of fluids hydrodynamics under nano-confinement is envisaged.

Key words: nanofluidics, hydrodynamics, diffusion, molecular simulation, electro osmosis flow

摘要:

纳米受限流体因其异于宏观流体的特殊性,在膜分离、介孔催化等领域均具有广阔的应用前景。壁面附近流体的分层有序结构及其对流体动力学特性的影响,是纳米受限流体区别于宏观流体的关键所在。从纳米受限流体的分子堆积结构及双电层结构出发,总结了模拟计算及实验研究中发现的规律,对纳米受限流体自扩散性质、壁面滑移现象等方面的进展进行了综述,探讨了宏观连续介质模型在纳米受限流体中的适用性,并就纳米受限流体动力学的发展进行了展望。

关键词: 纳米流体学, 流体动力学, 扩散, 分子模拟, 电渗流

CLC Number: