CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 209-217.DOI: 10.11949/j.issn.0438-1157.20150989
Previous Articles Next Articles
XU Junbo1, WANG Yuying1,2, YANG Chao1
Received:
2015-06-25
Revised:
2015-10-30
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Natural Science Foundation of China (21490584, 91534105, 21306199) and the National Basic Research Program of China (2013CB632601).
徐俊波1, 汪宇莹1,2, 杨超1
通讯作者:
杨超
基金资助:
国家自然科学基金项目(21490584,91534105,21306199);国家重点基础研究发展计划项目(2013CB632601)。
CLC Number:
XU Junbo, WANG Yuying, YANG Chao. Structure and hydrodynamics characteristics of fluids under nano-confinement[J]. CIESC Journal, 2016, 67(1): 209-217.
徐俊波, 汪宇莹, 杨超. 纳米受限流体的结构及流体动力学特性[J]. 化工学报, 2016, 67(1): 209-217.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20150989
[1] | MIJATOVIC D, EIJKEL J C, VAN DEN BERG A. Technologies for nanofluidic systems: top-down vs. bottom-up—a review [J]. Lab. Chip., 2005, 5(5): 492-500. DOI: 10.1039/b416951d. |
[2] | PERRY J L, KANDLIKAR S G. Review of fabrication of nanochannels for single phase liquid flow [J]. Microfluid. Nanofluid., 2005, 2(3): 185-193. DOI: 10.1007/s10404-005-0068-1. |
[3] | ABGRALL P, NGUYEN N T. Nanofluidic devices and their applications [J]. Anal. Chem., 2008, 80(7): 2326-2341. DOI: 10.1021/ac702296u. |
[4] | GOLDBERGER J, FAN R, YANG P. Inorganic nanotubes: a novel platform for nanofluidics [J]. Acc. Chem. Res., 2006, 39(4): 239-248. DOI: 10.1021/ar040274h. |
[5] | 陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象 [J]. 化工学报, 2013, 64(1):63-75. DOI: 10.3969/j.issn. 0438-1157. 2013.01.009.CHEN G W, ZHAO Y C, YUE J, et al. Transport phenomena in micro-chemical engineering [J]. CIESC Journal, 2013, 64(1):63-75. DOI: 10.3969/j.issn.0438-1157.2013.01.009. |
[6] | BOCQUET L, CHARLAIX E. Nanofluidics, from bulk to interfaces [J]. Chem. Soc. Rev., 2010, 39(3): 1073-1095. DOI: 10.1039/b909366b. |
[7] | EIJKEL J C T, VAN DEN BERG A. Nanofluidics: what is it and what can we expect from it? [J]. Microfluid. Nanofluid., 2005, 1(3): 249-267. DOI: 10.1007/s10404-004-0012-9. |
[8] | SPARREBOOM W, VAN DEN BERG A, Eijkel J C T. Transport in nanofluidic systems: a review of theory and applications [J]. New J. Phys., 2010, 12(1): 015004. DOI: 10.1088/1367-2630/12/1/015004. |
[9] | ALEXIADIS A, KASSINOS S. Molecular simulation of water in carbon nanotubes [J]. Chem. Rev., 2008, 108(12): 5014-5034. DOI: 10.1021/cr078140f. |
[10] | REISNER W, PEDERSEN J N, AUSTIN R H. DNA confinement in nanochannels: physics and biological applications [J]. Rep. Prog. Phys., 2012, 75(10): 106601. DOI: 10.1088/0034-4885/75/10/106601. |
[11] | STRIOLO A. The mechanism of water diffusion in narrow carbon nanotubes [J]. Nano Lett., 2006, 6(4): 633-639. DOI: 10.1021/nl052254u. |
[12] | THOMAS J A, MCGAUGHEY A J. Reassessing fast water transport through carbon nanotubes [J]. Nano Lett., 2008, 8(9): 2788-2793. DOI: 10.1021/nl8013617. |
[13] | HUMPLIK T, LEE J, O'HERN S C, et al. Nanostructured materials for water desalination [J]. Nanotechnology, 2011, 22(29): 292001. DOI: 10.1088/0957-4484/22/29/292001. |
[14] | CORRY B. Designing carbon nanotube membranes for efficient water desalination [J]. J. Phys. Chem. B, 2008, 112(5): 1427-1434. DOI: 10.1021/jp709845u. |
[15] | CORMA A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev., 1997, 97(6): 2373-2420. DOI: 10.1021/cr960406n. |
[16] | BEARDEN S, ZHANG G. The effects of the electrical double layer on giant ionic currents through single-walled carbon nanotubes [J]. Nanotechnology, 2013, 24(12): 125204. DOI: 10.1088/0957-4484/24/12/125204. |
[17] | REN Y, STEIN D. Slip-enhanced electrokinetic energy conversion in nanofluidic channels [J]. Nanotechnology, 2008, 19(19): 195707. DOI: 10.1088/0957-4484/19/19/195707. |
[18] | GUAN W, LI S X, REED M A. Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications [J]. Nanotechnology, 2014, 25(12): 122001. DOI: 10.1088/0957-4484/25/12/122001. |
[19] | XUE Y, CHEN M. Dynamics of molecules translocating through carbon nanotubes as nanofluidic channels [J]. Nanotechnology, 2006, 17(20): 5216-5223. DOI: 10.1088/0957-4484/17/20/029. |
[20] | YAN R X, LIANG W J, FAN R, et al. Nanofluidic diodes based on nanotube heterojunctions [J]. Nano Lett., 2009, 9(11): 3820-3825. DOI: 10.1021/nl9020123. |
[21] | DELLAGO C, NAOR M M, HUMMER G. Proton transport through water-filled carbon nanotubes [J]. Phys. Rev. Lett., 2003, 90(10): 105902. DOI: 10.1103/PhysRevLett.90.105902. |
[22] | HUMMER G, RASAIAH J C, NOWORYTA J P. Water conduction through the hydrophobic channel of a carbon nanotube [J]. Nature, 2001, 414(6860): 188-190. DOI: 10.1038/35102535. |
[23] | WANG J, ZHU Y, ZHOU J, et al. Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes [J]. Phys. Chem. Chem. Phys., 2004, 6(4): 829-835. DOI: 10.1039/b313307a. |
[24] | LIU Y C, WANG Q, WU T, et al. Fluid structure and transport properties of water inside carbon nanotubes [J]. J. Chem. Phys., 2005, 123(23): 234701. DOI: 10.1063/1.2131070. |
[25] | KOGA K, GAO G T, TANAKA H, et al. Formation of ordered ice nanotubes inside carbon nanotubes [J]. Nature, 2001, 412(6849): 802-805. DOI: 10.1038/35090532. |
[26] | COHEN-TANUGI D, GROSSMAN J C. Water desalination across nanoporous graphene [J]. Nano Lett., 2012, 12(7): 3602-3608. DOI: 10.1021/nl3012853. |
[27] | MATSUDA K, HIBI T, KADOWAKI H, et al. Water dynamics inside single-wall carbon nanotubes: NMR observations [J]. Phys.Rev. B, 2006, 74(7):073415. DOI: 10.1103/PhysRevB.74.073415. |
[28] | LIU L, PATEY G N. Simulations of water transport through carbon nanotubes: how different water models influence the conduction rate [J]. J. Chem. Phys., 2014, 141(18): 18C518. DOI: 10.1063/1.4896689. |
[29] | MOGHIMI KHEIRABADI A, MOOSAVI A, AKBARZADEH A M. Nanofluidic transport inside carbon nanotubes [J]. J. Phys. D: Appl. Phys., 2014, 47(6): 065304. DOI: 10.1088/0022-3727/47/6/065304. |
[30] | HUBER P. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media [J]. J. Phys. Condens. Matter., 2015, 27(10): 103102. DOI: 10.1088/0953-8984/27/10/103102. |
[31] | HOANG H, GALLIERO G. Local viscosity of a fluid confined in a narrow pore [J]. Phys. Rev. E, 2012, 86(2): 021202. DOI: 10.1103/PhysRevE.86.021202. |
[32] | XU J B, YANG C, SHENG Y J, et al. Apparent hydrodynamic slip induced by density inhomogeneities at the fluid-solid interfaces [J]. Soft Matter, 2015, 11:6916-6920. DOI: 10.1039/c5sm01627d. |
[33] | SU J Y, GUO H X. Effect of nanochannel dimension on the transport of water molecules [J]. J. Phys. Chem. B, 2012, 116(20): 5925-5932. DOI: 10.1021/jp211650s. |
[34] | SHOLL D S, JOHNSON J K. Materials science. Making high-flux membranes with carbon nanotubes [J]. Science, 2006, 312(5776): 1003-1004. DOI: 10.1126/science.1127261. |
[35] | GORDILLO M C, MARTÍ J. Hydrogen bond structure of liquid water confined in nanotubes [J]. Chem. Phys. Lett., 2000, 329(5-6): 341-345. DOI: 10.1016/s0009-2614(00)01032-0. |
[36] | ALEXIADIS A, KASSINOS S. The density of water in carbon nanotubes [J]. Chem. Eng. Sci., 2008, 63(8): 2047-2056. DOI: 10.1016/j.ces.2007.12.035. |
[37] | MENG Z, CHEN Y, LI X, et al. Cooperative effect of pH-dependent ion transport within two symmetric-structured nanochannels [J]. ACS Appl. Mater. Interfaces, 2015, 7(14): 7709-7716. DOI: 10.1021/acsami.5b00647. |
[38] | MORTENSEN N A, OLESEN L H, BRUUS H. Transport coefficients for electrolytes in arbitrarily shaped nano-and microfluidic channels [J]. New J. Phys., 2006, 8(3): 37-37. DOI: 10.1088/1367-2630/8/3/037. |
[39] | SCHOCH R B, HAN J, RENAUD P. Transport phenomena in nanofluidics [J]. Rev. Mod. Phys., 2008, 80(3): 839-883. DOI: 10.1103/RevModPhys.80.839. |
[40] | PLECIS A, SCHOCH R B, RENAUD P. Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip [J]. Nano Lett., 2005, 5(6): 1147-1155. DOI: 10.1021/nl050265h. |
[41] | GONG X, LI J, GUO C, et al. Molecular switch for tuning ions across nanopores by an external electric field [J]. Nanotechnology, 2013, 24(2): 025502. DOI: 10.1088/0957-4484/24/2/025502. |
[42] | ZHAO J, CULLIGAN P J, QIAO Y, et al. Electrolyte solution transport in electropolar nanotubes [J]. J. Phys. Condens. Matter., 2010, 22(31): 315301. DOI: 10.1088/0953-8984/22/31/315301. |
[43] | TAGHAVI F, JAVADIAN S, HASHEMIANZADEH S M. Molecular dynamics simulation of single-walled silicon carbide nanotubes immersed in water [J]. J. Mol. Graph. Model., 2013, 44: 33-43. DOI: 10.1016/j.jmgm.2013.04.012. |
[44] | MUKHERJEE B, MAITI P K, DASGUPTA C, et al. Strong correlations and fickian water diffusion in narrow carbon nanotubes [J]. J. Chem. Phys., 2007, 126(12): 124704. DOI: 10.1063/1.2565806. |
[45] | MUKHERJEE B, MAITI P K, DASGUPTA C, et al. Single-file diffusion of water inside narrow carbon nanorings [J]. ACS Nano, 2010, 4(2): 985-991. DOI: 10.1021/nn900858a. |
[46] | BANDOW B, HESS S, KRÖGER M. Pressure, dynamics, and structure of a simple particle system confined in a soft nanopore [J]. Physica A, 2004, 337(3-4): 443-469. DOI: 10.1016/j.physa. 2004.02.006. |
[47] | AGGARWAL N, SOOD J, TANKESHWAR K. Anisotropic diffusion of a fluid confined to different geometries at the nanoscale [J]. Nanotechnology, 2007, 18(33): 335707. DOI: 10.1088/0957-4484/18/33/335707. |
[48] | 徐俊波, 温浩, 杨超. 受限空间分子自扩散性质的耗散粒子动力学模拟 [J]. 中国科学:化学, 2015, 45(1): 42-48. DOI: 10.1360/n032014-00240.XU J B, WEN H, YANG C. Dissipative particle dynamics simulation of molecule self-diffusion under cylindrical confinement [J]. Scientia Sinica Chimica, 2015, 45(1): 42-48. DOI: 10.1360/n032014-00240. |
[49] | SENDNER C, HORINEK D, BOCQUET L, et al. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion [J]. Langmuir, 2009, 25(18): 10768-10781. DOI: 10.1021/la901314b. |
[50] | BOCQUET L, BARRAT J L. On the Green-Kubo relationship for the liquid-solid friction coefficient [J]. J. Chem. Phys., 2013, 139(4): 044704. DOI: 10.1063/1.4816006. |
[51] | HUANG K, SZLUFARSKA I. Green-Kubo relation for friction at liquid-solid interfaces [J]. Phys. Rev. E, 2014, 89(3): 032119. DOI: 10.1103/PhysRevE.89.032119. |
[52] | RUCKENSTEIN E, RAJORA P. On the no-slip boundary condition of hydrodynamics [J]. J. Colloid Interf. Sci., 1983, 96(2): 488-491. DOI: 10.1016/0021-9797(83)90050-4. |
[53] | VINOGRADOVA O I. Slippage of water over hydrophobic surfaces [J]. Int. J. Miner. Process., 1999, 56(1-4): 31-60. DOI: 10.1016/s0301-7516(98)00041-6. |
[54] | RUCKENSTEIN E, CHURAEV N. A possible hydrodynamic origin of the forces of hydrophobic attraction [J]. J. Colloid Interf. Sci., 1991, 147(2): 535-538. DOI: 10.1016/0021-9797(91)90188-e. |
[55] | CHEN Q. Enhanced fluid flow through nanopores by polymer brushes [J]. Langmuir, 2014, 30(27): 8119-8123. DOI: 10.1021/la501781h. |
[56] | HUANG D M, SENDNER C, HORINEK D, et al. Water slippage versus contact angle: a quasiuniversal relationship [J]. Phys. Rev. Lett., 2008, 101(22): 226101. DOI: 10.1103/PhysRevLett.101.226101. |
[57] | QIAO R, ALURU N R. Charge inversion and flow reversal in a nanochannel electro-osmotic flow [J]. Phys. Rev.Lett., 2004, 92(19): 198301. DOI: 10.1103/PhysRevLett.92.198301. |
[58] | 汪宇莹, 徐俊波, 杨超. 纳米通道内流体流动的耗散粒子动力学模拟[C]//中国力学学会办公室. 中国力学大会-2015论文摘要集. 上海: 中国力学学会办公室, 2015: MS4216.WANG Y Y, XU J B, YANG C. Dissipative particle dynamics simulaion of flow within nanochannels[C]//The Chinese Society of Theoretical and Applied Mechanics. The Chinese Congress of Theoretical and Applied Mechanics (CCTAM2015). Shanghai, China: The Chinese Society of Theoretical and Applied Mechanics, 2015: MS4216.mena in nanofluidics[J]. Rev. Mod. Phys., 2008, 80(3): 839-883. DOI: 10.1103/RevModPhys.80.839. |
[40] | PLECIS A, SCHOCH R B, RENAUD P. Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip[J]. Nano Lett., 2005, 5(6): 1147-1155. DOI: 10.1021/nl050265h. |
[41] | GONG X, LI J, GUO C, et al. Molecular switch for tuning ions across nanopores by an external electric field[J]. Nanotechnology, 2013, 24(2): 025502. DOI: 10.1088/0957-4484/24/2/025502. |
[42] | ZHAO J, CULLIGAN P J, QIAO Y, et al. Electrolyte solution transport in electropolar nanotubes[J]. J. Phys. Condens. Matter., 2010, 22(31): 315301. DOI: 10.1088/0953-8984/22/31/315301. |
[43] | TAGHAVI F, JAVADIAN S, HASHEMIANZADEH S M. Molecular dynamics simulation of single-walled silicon carbide nanotubes immersed in water[J]. J. Mol. Graph. Model., 2013, 44: 33-43. DOI: 10.1016/j.jmgm.2013.04.012. |
[44] | MUKHERJEE B, MAITI P K, DASGUPTA C, et al. Strong correlations and fickian water diffusion in narrow carbon nanotubes[J]. J. Chem. Phys., 2007, 126(12): 124704. DOI: 10.1063/1.2565806. |
[45] | MUKHERJEE B, MAITI P K, DASGUPTA C, et al. Single-file diffusion of water inside narrow carbon nanorings[J]. ACS Nano, 2010, 4(2): 985-991. DOI: 10.1021/nn900858a. |
[46] | BANDOW B, HESS S, KRÖGER M. Pressure, dynamics, and structure of a simple particle system confined in a soft nanopore[J]. Physica A, 2004, 337(3-4): 443-469. DOI: 10.1016/j.physa.2004.02.006. |
[47] | AGGARWAL N, SOOD J, TANKESHWAR K. Anisotropic diffusion of a fluid confined to different geometries at the nanoscale[J]. Nanotechnology, 2007, 18(33): 335707. DOI: 10.1088/0957-4484/18/33/335707. |
[48] | 徐俊波, 温浩, 杨超. 受限空间分子自扩散性质的耗散粒子动力学模拟[J]. 中国科学:化学, 2015, 45(1): 42-48. DOI: 10.1360/n032014-00240. XU J B, WEN H, YANG C. Dissipative particle dynamics simulation of molecule self-diffusion under cylindrical confinement[J]. Scientia Sinica Chimica, 2015, 45(1): 42-48. DOI: 10.1360/n032014-00240. |
[49] | SENDNER C, HORINEK D, BOCQUET L, et al. Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion[J]. Langmuir, 2009, 25(18): 10768-10781. DOI: 10.1021/la901314b. |
[50] | BOCQUET L, BARRAT J L. On the green-kubo relationship for the liquid-solid friction coefficient[J]. J. Chem. Phys., 2013, 139(4): 044704. DOI: 10.1063/1.4816006. |
[51] | HUANG K, SZLUFARSKA I. Green-kubo relation for friction at liquid-solid interfaces[J]. Phys. Rev. E, 2014, 89(3): 032119. DOI: 10.1103/PhysRevE.89.032119. |
[52] | RUCKENSTEIN E, RAJORA P. On the no-slip boundary condition of hydrodynamics[J]. J. Colloid Interf. Sci., 1983, 96(2): 488-491. DOI: 10.1016/0021-9797(83)90050-4. |
[53] | VINOGRADOVA O I. Slippage of water over hydrophobic surfaces[J]. Int. J. Miner. Process., 1999, 56(1-4): 31-60. DOI: 10.1016/s0301-7516(98)00041-6. |
[54] | RUCKENSTEIN E, CHURAEV N. A possible hydrodynamic origin of the forces of hydrophobic attraction[J]. J. Colloid Interf. Sci., 1991, 147(2): 535-538. DOI: 10.1016/0021-9797(91)90188-e. |
[55] | CHEN Q. Enhanced fluid flow through nanopores by polymer brushes[J]. Langmuir, 2014, 30(27): 8119-8123. DOI: 10.1021/la501781h. |
[56] | HUANG D M, SENDNER C, HORINEK D, et al. Water slippage versus contact angle: A quasiuniversal relationship[J]. Phys. Rev. Lett., 2008, 101(22): 226101. DOI: 10.1103/PhysRevLett.101.226101. |
[57] | QIAO R, ALURU N R. Charge inversion and flow reversal in a nanochannel electro-osmotic flow[J]. Phys. Rev.Lett., 2004, 92(19): 198301. DOI: 10.1103/PhysRevLett.92.198301. |
[58] | 汪宇莹, 徐俊波, 杨超. 纳米通道内流体流动的耗散粒子动力学模拟[C]//中国力学学会办公室. 中国力学大会-2015论文摘要集. 上海: 中国力学学会办公室, 2015: MS4216.WANG Y Y, XU J B, YANG C. Dissipative particle dynamics simulaion of flow within nanochannels[C]//The Chinese Society of Theoretical and Applied Mechanics. The Chinese Congress of Theoretical and Applied Mechanics (CCTAM2015). Shanghai, China: The Chinese Society of Theoretical and Applied Mechanics, 2015: MS4216. |
[1] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[2] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[5] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[9] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[10] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[11] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[14] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[15] | Peixu ZHOU, Yalun LI, Gongran YE, Yuan ZHUANG, Xilei WU, Zhikai GUO, Xiaohong HAN. Influence of physical properties of working fluids on leakage and diffusion characteristics of refrigerant in limited space [J]. CIESC Journal, 2023, 74(2): 953-967. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||