CIESC Journal ›› 2016, Vol. 67 ›› Issue (8): 3121-3132.DOI: 10.11949/j.issn.0438-1157.20160404
Previous Articles Next Articles
LU Bona, ZHANG Jingyuan, WANG Wei, LI Jinghai
Received:
2016-03-31
Revised:
2016-04-27
Online:
2016-08-05
Published:
2016-08-05
Supported by:
supported by the National Basic Research Program of China (2012CB215003), the National Natural Science Foundation of China (21576263) and the Youth Innovation Promotion Association CAS.
鲁波娜, 张景远, 王维, 李静海
通讯作者:
鲁波娜
基金资助:
国家重点基础研究发展计划项目(2012CB215003);国家自然科学基金项目(21576263);中国科学院青年创新促进会。
CLC Number:
LU Bona, ZHANG Jingyuan, WANG Wei, LI Jinghai. CFD modeling of FCC reaction process: a review[J]. CIESC Journal, 2016, 67(8): 3121-3132.
鲁波娜, 张景远, 王维, 李静海. FCC反应过程的CFD模拟进展[J]. 化工学报, 2016, 67(8): 3121-3132.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20160404
[1] | DUTTA A,CONSTALES D,HEYNDERICKX G J.Applying the direct quadrature method of moments to improve multiphase FCC riser reactor simulation[J].Chem.Eng.Sci.,2012,83:93-109. |
[2] | ZHU C,JUN Y,PATEL R,et al.Interactions of flow and reaction in fluid catalytic cracking risers[J].AIChE Journal,2011,57(11):3122-3131. |
[3] | 许友好,汪燮卿.催化裂化过程反应化学的进展[J].中国工程科学,2007,9(8):6-14.XU Y H,WANG X Q.Advance in FCC process reaction chemistry[J].Engineering Sciences,2007,9(8):6-14 |
[4] | 陈俊武.催化裂化工艺与工程[M].2版.北京:中国石油出版社,2005.CHEN J W.Catalytic Cracking Process and Engineering[M].2nd ed.Beijing:China Petrochemical Press,2005. |
[5] | CHEN Y M.Recent advances in FCC technology[J].Powder Tech.,2006,163:2-8. |
[6] | 许友好,张久顺,龙军.生产清洁汽油组分的催化裂化新工艺MIP[J].石油炼制与化工,2001,32(8):1-5.XU Y H,ZHANG J S,LONG J.A modified FCC process MIP for maximizing iso-paraffins in cracked naphtha[J].Petroleum Processing and Petrochemicals,2001,32(8):1-5. |
[7] | 许友好,张久顺,龙军,等.多产异构烷烃的催化裂化工艺技术开发与工业应用[J].中国工程科学,2003,5(5):55-58.XU Y H,ZHANG J S,LONG J,et al.Development and commerical application of FCC process for maximizing iso-paraffins (MIP) in cracked naphtha[J].Engineering Sciences,2003,5(5):55-58. |
[8] | 山红红,李春义,钮根林,等.流化催化裂化技术研究进展[J].石油大学学报(自然科学版),2005,29(6):135-150.SHAN H H,LI C Y,NIU G L,et al.Research progress in fluid catalytic cracking technology[J].Journal of the University of Petroleum,China,2005,29(6):135-150. |
[9] | 杨朝合,山红红,张建芳,等.传统催化裂化提升管反应器的弊端与两段提升管催化裂化[J].中国石油大学学报(自然科学版),2007,31:127-138.YANG C H,SHAN H H,ZHANG J F,et al.Shortcoming of conversional RFCC reactor and advantage of TSRFCC technology[J].Journal of China University of Petroleum,2007,31:127-138. |
[10] | LI J H,KWAUK M.Paticle-Fluid Two-Phase Flow:the Energy-Minimization Multi-Scale Method[M].Beijing:Metallurgical Industry Press,1994. |
[11] | WANG X H,GAO S Q,XU Y H,et al.Gas-solids flow patterns in a novel dual-loop FCC riser[J].Powder Tech.,2005,152:90-99. |
[12] | LU B N,WANG W,LI J H,et al.Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model[J].Chem.Eng.Sci.,2007,62(18/19/20):5487-5494. |
[13] | 鲁波娜,程从礼,鲁维民,等.基于多尺度模型的MIP提升管反应历程数值模拟[J].化工学报,2013,64(6):1983-1992.LU B N,CHENG C L,LU W M,et al.Numerical simulation of reaction process in MIP riser based on multi-scale model[J].CIESC Journal,2013,64(6):1983-1992. |
[14] | PINHEIRO C I C,FERNANDES J L,DOMINGUES L,et al.Fluid catalytic cracking (FCC) process modeling,simulation,and control[J].Ind.Eng.Chem.Res.,2012,51(1):1-29. |
[15] | GUPTA R K,KUMAR V,SRIVASTAVA V K.Modeling of fluid catalytic cracking riser reactor:a review[J].Inter.J.Chem.Reactor Eng.,2010,8:R6. |
[16] | 杨朝合,杜玉朋,赵辉.催化裂化提升管反应器流动反应耦合模型研究进展[J].化工进展,2015,34(3):608-616.YANG C H,DU Y P,ZHAO H.Evolvement of flow-reaction models for fluid catalytic cracking riser reactors[J].Chemical Industry and Engineering Progress,2015,34(3):608-616. |
[17] | GIDASPOW D.Multiphase Flow and Fluidization:Continuum and Kinetic Theory Descriptions[M].Boston:Academic Press,1994. |
[18] | ANSYS Inc.ANSYS Fluent Theory Guide (release 15.0)[EB/OL].http://www.ansys.com,2013. |
[19] | IGCI Y,PANNALA S,BENYAHIA S,et al.Validation studies on filtered model equations for gas-particle flows in risers[J].Ind.Eng.Chem.Res.,2012,51:2094-2103. |
[20] | OZARKAR S S,YAN X,WANG S,et al.Validation of filtered two-fluid models for gas-particle flows against experimetal data from bubbling fluidized bed[J].Powder Tech.,2015,284:159-169. |
[21] | HOLLOWAY W,SUNDARESAN S.Filtered models for reactng gas-particle flows[J].Chem.Eng.Sci.,2012,82:132-143. |
[22] | IGCI Y,ANDREWS Ⅳ A T,SUNDARESAN S,et al.Filtered two-fluid models for fluidized gas-particle suspensions[J].AIChE J.,2008,54(6):1431-1448. |
[23] | AGRAWAL K,LOEZOS P N,SYAMLAL M,et al.The role of mesoscale structures in rapid gas-solid flows[J].J.Fluid Mech.,2001,445:151-185. |
[24] | MILIOLI C C,MILIOLI F E,HOLLOWAY W,et al.Filtered two-fluid models of fluidized gas-particle flows:new constitutive relations[J].AIChE J.,2013,59(9):3265-3275. |
[25] | ANDREWS Ⅳ A T.Filtered models for gas-particle flow hydrodynamics[D].Princeton University,2007. |
[26] | YANG N,WANG W,GE W,et al.CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J].Chem.Eng.J.,2003,96:71-80. |
[27] | YANG N,WANG W,GE W,et al.Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach[J].Ind.Eng.Chem.Res.,2004,43(18):5548-5561. |
[28] | WANG W,LI J H.Simulation of gas-solid two-phase flow by a multi-scale CFD approach-extension of the EMMS model to the sub-grid level[J].Chem.Eng.Sci.,2007,62(1/2):208-231. |
[29] | LU B N,WANG W,LI J H.Eulerian simulation of gas-solid flows with particles of Geldart groups A,B and D using EMMS-based meso-scale model[J].Chem.Eng.Sci.,2011,66(20):4624-4635. |
[30] | WANG J W,GE W,LI J H.Eulerian simulation of heterogeneous gas-solid flows in CFB risers:EMMS-based sub-grid scale model with a revised cluster description[J].Chem.Eng.Sci.,2008,63(6):1553-1571. |
[31] | SHI Z S,WANG W,LI J H.A bubble-based EMMS model for gas-solid bubbling fluidization[J].Chem.Eng.Sci.,2011,66(22):5541-5555. |
[32] | HONG K,WANG W,ZHOU Q,et al.An EMMS-based multi-fluid model (EFM) for heterogeneous gas-solid riser flows (Ⅰ):Formulation of structure-dependent conservation equations[J].Chem.Eng.Sci.,2012,75:376-389. |
[33] | HONG K,SHI Z S,ULLAH A,et al.Extending the bubble-based EMMS model to CFB riser simulations[J].Powder Tech.,2014,266:424-432. |
[34] | CHEN C,LI F,QI H Y.Modeling of the flue gas desulfurization in a CFB riser using the Eulerian approach with heterogeneous drag coefficient[J].Chem.Eng.Sci.,2012,69(1):659-668. |
[35] | QI H Y,LI F,XI B,et al.Modeling of drag with the Eulerian approach and EMMS theory for heterogeneous dense gas-solid two-phase flow[J].Chem.Eng.Sci.,2007,62(6):1670-1681. |
[36] | WANG S,ZHAO G B,LIU G D,et al.Hydrodynamics of gas-solid risers using cluster structure-dependent drag model[J].Powder Tech.,2014,254:214-227. |
[37] | WANG S,LIU G D,LU H L,et al.A cluster structure-dependent drag coefficient model applied to risers[J].Powder Tech.,2012,225:176-189. |
[38] | WANG S,LU H L,HAO Z H,et al.Modeling of reactive gas-solid flows in riser reactors using a multi-scale chemical reaction model[J].Chem.Eng.Sci.,2014,116:773-780. |
[39] | WANG X,JIANG F,LEI J,et al.A revised drag force model and the application for the gas-solid flow in the high-density circulating fluidized bed[J].Applied Therm.Eng.,2011,31(14/15):2254-2261. |
[40] | NIKOLOPOULOS A,ATSONIOS K,NIKOLOPOULOS N,et al.An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow (Ⅱ):Numerical implementation[J].Chem.Eng.Sci.,2010,65(13):4089-4099. |
[41] | NIKOLOPOULOS A,PAPAFOTIOU D,NIKOLOPOULOS N,et al.An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow (Ⅰ):Numerical formulation[J].Chem.Eng.Sci.,2010,65(13):4080-4088. |
[42] | SHAH M T,UTIKAR R P,TADE M O,et al.Simulation of gas-solid flows in riser using energy minimization multiscale model:effect of cluster diameter correlation[J].Chem.Eng.Sci.,2011,66(14):3291-3300. |
[43] | SHAH M T,UTIKAR R P,TADE M O,et al.Hydrodynamics of an FCC riser using energy minimization multiscale drag model[J].Chem.Eng.J.,2011,168(2):812-821. |
[44] | LU B,WANG W,LI J.Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J].Chem.Eng.Sci.,2009,64(15):3437-3447. |
[45] | SAKAI M,KOSHIZUKA S.Large-scale discrete element modeling in pneumatic conveying[J].Chem.Eng.Sci.,2009,64(3):533-539. |
[46] | ANDREWS M J,O'ROURKE P J.The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J].Inter.J.Multiphase Flow,1996,22(2):379-402. |
[47] | SAKANO M,YASO T,NAKANISHI H.Numerical simulation of two-dimensional fluidized bed using discrete element method with imaginary sphere model[J].Japanese J.Multiphase Flow,2000,14(1):66-73. |
[48] | HILTON J E,CLEARY P W.Comparison of non-cohesive resolved and coarse grain DEM models for gas flow through particle beds[J].Applied Math.Modelling,2014,38:4197-4214. |
[49] | LI F,SONG F,BENYAHIA S,et al.MP-PIC simulation of CFB riser with EMMS-based drag model[J].Chem.Eng.Sci.,2012,82:104-113. |
[50] | LU L,XU J,GE W,et al.EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J].Chem.Eng.Sci.,2014,120:67-87. |
[51] | CHANG A F,PASHIKANTI K,LIU Y A.Predictive modeling of the fluid catalytic cracking (FCC) process[M]//Refinery Engineering.Wiley-VCH Verlag GmbH&Co.KGaA,2012:145-251. |
[52] | ARIS R.Prolegomena to the rational analysis of system of chemical reactions[J].Archive for Rational Mechanics and Analysis,1965,19(2):81-99. |
[53] | WEI J,KUO J C W.Lumping analysis in monomolecular reaction systems.Analysis of the reactly lumpable system[J].Ind.Eng.Chem.Fundamentals,1969,8(1):114-133. |
[54] | 段良伟,薛高平,翁惠新.催化裂化集总反应动力学模型研究进展[J].化工进展,2010,29(增刊):22-27.DUAN L W,XUE G P,WENG H X.Research progress of lump kinetic model of fluid catalytic cracking[J].Chemical Industry and Engineering Progress,2010,29(supplement):22-27. |
[55] | 吴飞跃.FDFCC集总反应动力学模型的研究[D].上海:华东理工大学,2008.WU F Y.Study on lumped kinetic model for FDFCC[D].Shanghai:East China University of Science and Technology,2008. |
[56] | WEEKMAN V W J,NACE D M.Kinetics of catalytic cracking selectivity in fixed,moving,and fluid-bed reactors[J].AIChE J.,1970,16(3):397-404. |
[57] | JACOB S M,GROSS B,VOLTZ S E,et al.A lumping and reaction scheme for catalytic cracking[J].AIChE J.,1976,22(4):701-713. |
[58] | 任杰,翁惠新,刘馥英.催化裂化反应八集总动力学[J].石油学报(石油加工),1994,10(1):1-7.REN J,WENG H X,LIU F Y.Investigation of the lumped kinetic model for catalytic cracking reaction[J].Acta Petrolei Sinica (Petroleum Processing Section),1994,10(1):1-7. |
[59] | BOLLAS G M,LAPPAS A A,IATRIDIS D K.Five-lump kinetic model with selective catalyst deactivation for the prediction of the product selectivity in the fluid catalytic cracking process[J].Catalysis Today,2007,27(127):31-43. |
[60] | NEVICATO D,PITAULT I,FORISSIER M,et al.The activity decay of cracking catalysts:chemical and structural deactivation by coke[J].Catalyst Deactivation,1994,88:249-256. |
[61] | 熊凯,卢春喜.催化裂化(裂解)集总反应动力学模型研究进展[J].石油学报(石油加工),2015,31(2):293-306.XIONG K,LU C X.Research progresses of lump kinetic model of FCC and catalytic pyrolysis[J].Acta Petrolei Sinica (Petroleum Processing Section),2015,31(2):293-306. |
[62] | 张旭,郭锦标,周祥,等.分子水平动力学模型在催化裂化反应中的应用[J].化工进展,2012,31:2678-2685.ZHANG X,GUO J B,ZHOU X,et al.Application of molecular level kinetic modeling to catalytic cracking reaction[J].Chemical Industry and Engineering Progress,2012,31:2678-2685. |
[63] | BALTANAS M A,VAN R K K,FROMENT G F,et al.Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble metal-loaded faujasites (Ⅰ):Rate parameters for hydroisomerization[J].Ind.Eng.Chem.Res.,1989,28(7):899-910. |
[64] | QUANN R J,JAFFE S B.Structure-oriented lumping:describing the chemistry of complex hydrocarbon mixtures[J].Ind.Eng.Chem.Res.,1992,31(11):2483-2497. |
[65] | DEWACHTERE N V,SANTAELLA F,FROMENT G.F.Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil[J].Chem.Eng.Sci.,1999,54(15/16):3653-3660. |
[66] | QUINTANA-SOLÓRZANO R,THYBAUT J W,GALTIER P,et al.Simulation of an industrial riser for catalytic cracking in the presence of coking using single-event micro kinetics[J].Catalysis Today,2010,150(3/4):319-331. |
[67] | WU C N,CHENG Y,DING Y L,et al.CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process[J].Chem.Eng.Sci.,2010,65(1):542-549. |
[68] | GAO J S,XU C M,LIN S X,et al.Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors[J].AIChE J.,1999,45(5):1095-1113. |
[69] | GAO J S,XU C M,LIN S X,et al.Simulations of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors[J].AIChE J.,2001,47(3):677-692. |
[70] | LAN X Y,XU C M,WANG G,et al.CFD modeling of gas-solid flow and cracking reaction in two-stage riser FCC reactors[J].Chem.Eng.Sci.,2009,64(17):3847-3858. |
[71] | ZHENG Y,WAN X T,QIAN Z,et al.Numerical simulation of the gas-particle turbulent flow in riser reactor based on k-ε-kp-εp-Θ two-fluid model[J].Chem.Eng.Sci.,2001,56(24):6813-6822. |
[72] | CHANG J,CAI W,ZHANG K,et al.Computational investigation of the hydrodynamics,heat transfer and kinetic reaction in an FCC gasoline riser[J].Chem.Eng.Sci.,2014,111:170-179. |
[73] | CHANG J,MENG F D,WANG L Y,et al.CFD investigation of hydrodynamics,heat transfer and cracking reaction in a heavy oil riser with bottom airlift loop mixer[J].Chem.Eng.Sci.,2012,78:128-143. |
[74] | TANG G W.Numerical simulation of industrial fluid catalytic cracking regenerator and riser[D].Purdue University,2013. |
[75] | LOPES G C,ROSA L M,MORI M,et al.Three-dimensional modeling of fluid catalytic cracking industrial riser flow and reactions[J].Com.Chem.Eng.,2011,35(11):2159-2168. |
[76] | GAN J Q,ZHAO H,BERROUK A S,et al.Numerical simulation of hydrodynamics and cracking reactions in the feed mixing zone of a multiregime gas-solid riser reactor[J].Ind.Eng.Chem.Res.,2011,50(20):11511-11520. |
[77] | BENYAHIA S,ORTIZ A G,PAREDES J I P.Numerical analysis of a reacting gas/solid flow in the riser section of an industrial fluid catalytic cracking unit[J].Inter.J.Chem.Reactor Eng.,2003,1:A41. |
[78] | BERRY T A,MCKEEN T R,PUGSLEY T S,et al.Two-dimensional reaction engineering model of the riser section of a fluid catalytic cracking unit[J].Ind.Eng.Chem.Res.,2004,43(18):5571-5581. |
[79] | YANG B L,ZHOU X W,YANG X H,et al.Multi-scale study on the secondary reactions of fluid catalytic cracking gasoline[J].AIChE J.,2009,55(8):2138-2149. |
[80] | LI J H,KWAUK M.The dynamics of fast fluidization[M]//Fluidization.Plenum Press,1980. |
[81] | 程从礼,李静海,张忠东,等.气固垂直并流向上两相流流体动力学模型[J].化工学报,2001,52(8):684-689.CHENG C L,LI J H,ZHANG Z D,et al.Fluid dynamic model of concurrent-up gas-solid two-phase flow[J].Journal of Chemical Industry and Engineering (China),2001,52(8):684-689. |
[82] | NAYAK S V,JOSHI S L,RANADE V V.Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser[J].Chem.Eng.Sci.,2005,60(22):6049-6066. |
[83] | PATEL R,HE P F,ZHANG B,et al.Transport of interacting and evaporating liquid sprays in a gas-solid riser reactor[J].Chem.Eng.Sci.,2013,100:433-444. |
[84] | PATEL R,WANG D,ZHU C,et al.Effect of injection zone cracking on fluid catalytic cracking[J].AIChE J.,2013,59(4):1226-1235. |
[85] | BEHJAT Y,SHAHHOSSEINI S,MARVAST M A.CFD analysis of hydrodynamic,heat transfer and reaction of three phase riser reactor[J].Chem.Eng.Res.Des.,2011,89(7):978-989. |
[86] | NGUYEN T T B,MITRA S,PAREEK V,et al.Comparison of vaporization models for feed droplet in fluid catalytic cracking risers[J].Chem.Eng.Res.Des.,2015,101:82-97. |
[87] | LI J,LUO Z H,LAN X Y,et al.Numerical simulation of the turbulent gas-solid flow and reaction in a polydisperse FCC riser reactor[J].Powder Tech.,2013,237:569-580. |
[88] | CHEN G Q,LUO Z H.New insights into intraparticle transfer,particle kinetics,and gas-solid two-phase flow in polydisperse fluid catalytic cracking riser reactors under reaction conditions using multi-scale modeling[J].Chem.Eng.Sci.,2014,109:38-52. |
[89] | DU Y P,ZHAO H,MA A,et al.Equivalent reactor network model for the modeling of fluid catalytic cracking riser reactor[J].Ind.Eng.Chem.Res.,2015,54(35):8732-8742. |
[90] | HE P F,ZHU C,HO T C.A two-zone model for fluid catalytic cracking riser with multiple feed injectors[J].AIChE J.,2015,61(2):610-619. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[5] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[6] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[7] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[8] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[9] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[10] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[11] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[12] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[13] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[14] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[15] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||