CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 134-141.doi: 10.11949/j.issn.0438-1157.20160621

Previous Articles     Next Articles

Triangular winglet strengthen heat transfer characteristics of solar chimney power plants with vertical collectors

ZHOU Yan, DONG Haoran, WANG Li, LI Qingling   

  1. College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
  • Received:2016-05-09 Revised:2016-05-19 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51176080).

Abstract:

In this paper,triangular winglets strengthening the unsteady natural convection flow and heat transfer, which were set up on the collector surface in the solar chimney power plant system, was researched with numerical methods. The number of ribs, rib inclination and arrangement influence on the temperature and velocity difference of the airflow between the inlet and outlet were analyzed. And heat effects of the triangular winglets were evaluated combining with the principle of field synergy. The results show that:With air flowed through the triangular winglets, the temperature gradient increases, the heat transfer is enhanced, the temperature and velocity difference of the airflow between the inlet and outlet increases sharply. As the number of ribs increased, the synergy angle between velocity and temperature gradient decreased because the disturbed effect enhanced, but energy loss increased as the flow friction increased, and when rib inclination is 45°, the velocity difference between inlet and outlet is the largest. With triangular winglets arranged in the vertical rectangular channel, staggered arrangement is better than the aligned.

Key words: solar chimney power plant system with vertical heat collectors, field synergy principle, numerical simulation, triangular winglets, flow, heat transfer

CLC Number: 

  • TQ028.8
[1] SCHLAICH J. Solar chimneys[J]. Periodical,1983,(3):45.
[2] ROBERT R. Spanish solar chimney nears completion[J]. MPS Review, 1981,(6):21-23.
[3] ROBERT R. Solar prototype development in spain show great promise[J]. MPS Review, 1982,(2):21-23.
[4] PADKI M M, SHERIF S A. Fluid dynamics of solar chimneys[C]//Proceedings of the ASME Winter Annual Meeting. USA:American Society of Mechanical Engineers, 1988:43-46.
[5] PADKI M M, SHERIF S A. An analytical model for solar chimneys[C]//Proceedings of International Renewable Energy Conference. Amman:Elsevier, 1992:289-294.
[6] YAN M Q, SHERIF S A, KRIDLI G T. Thermo-fluid analysis of solar chimneys[J]. Industrial Applications of Fluid Mechanics, 1991,(132):125-130.
[7] PASUMARTHI N, SHERIF S A. Experimental and theoretical performance of a demonstration solar chimney model (Ⅰ):Mathematical model development[J]. International Journal of Energy Research, 1998,22(3):277-288.
[8] PASUMARTHI N, SHERIF S A. Experimental and theoretical performance of a demonstration solar chimney model (Ⅱ):Experimental and theoretical results and economic analysis[J]. International Journal of Energy Research, 1998,22(5):443-461.
[9] ATIT K, TAWIT C. Effects of flow area changes on the potential of solar chimney power plants[J]. Energy, 2013, (51):400-406.
[10] REDDY V S, PREMALATHA M, RANJAN K R. Experimental studies on solar chimney for enhanced ventilation[J]. International Journal of Sustainable Energy, 2015, 33(1):35-42.
[11] 周艳, 李洁浩, 李庆领. 依托高楼的新型太阳能热气流电站系统[J]. 热力发电, 2009,38(7):4-6. ZHOU Y, LI J H, LI Q L. A new kind of hot-air-flow power plant system relying on high buildings by using solar energy[J]. Thermal Power Generation, 2009,38(7):4-6.
[12] 周艳, 李庆领, 李洁浩, 等. 立式集热板太阳能热气流电站系统研究[J]. 工程热物理学报, 2010, 31(3):465-468. ZHOU Y, LI Q L, LI J H, et al. A study on solar chimney power plant system with vertical collector[J]. Journal of Engineering Thermophysics, 2010,31(3):465-468.
[13] 周艳, 张学伟, 李庆领. 基于太阳墙技术的太阳能热气流发电系统的数值模拟[J]. 青岛科技大学学报(自然科学版), 2009, 30(2):168-172. ZHOU Y, ZHANG X W, LI Q L. Numerical simulation of the solar chimney power plant system based on solar-wall technology[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2009, 30(2):168-172.
[14] 李洁浩, 李庆领, 周艳, 等. 立式集热板太阳能热气流电站流场的数值模拟[J]. 青岛科技大学学报(自然科学版), 2010, 31(4):404-409. LI J H, LI Q L, ZHOU Y, et al. Numerical simulation of air distribution in the solar chimney power plant system with vertical heat collection plate[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2010, 31(4):404-409.
[15] ZHOU Y, ZHENG W J, FAN X Y, et al. Numerical study on enhanced paraffin/air heat transfer with extended surface[J]. Key Engineering Materials, 2012,(501):376-381.
[16] 周艳, 李洁浩, 刘晓惠, 等. 烟囱性状对立式集热板太阳能热气流电站系统性能的影响[J]. 太原理工大学学报, 2010, 41(5):492-495. ZHOU Y, LI J H, LIU X H, et al. The influences of chimney shape on the properties of the solar chimney power plant system with vertical heat collector[J]. Journal of Taiyuan University of Technology, 2010, 41(5):492-495.
[17] 周艳, 李洁浩, 李庆领, 等. 立式集热板式太阳能热气流发电系统性能研究[J]. 热力发电, 2010,39(4):27-30. ZHOU Y, LI J H, LI Q L, et al. Study on the performence of hot-air-flow power generation system using solar energy with vertical heat collector[J]. Thermal Power Generation, 2010,39(4):27-30.
[18] 过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京:中国电力出版社, 2004:1-10. GUO Z Y, HUANG S Y. Field Synergy Principle and Enhanced Heat Transfer Technology[M]. Beijing:China Electric Power Press, 2004:1-10
[19] CHEN Y,FIEBIG M,MITRA N K. Heat transfer enhancement on a finned oval tube with punched longitudinal vortex generators in-line[J]. Heat and Mass Transfer, 1998,(41):4151-4166.
[20] CHEN Y, FIEBIG M, MITRA N K. Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators[J]. Heat and Mass Transfer, 2000,(43):417-435.
[21] 高猛, 周国兵. 几种涡流发生器对矩形通道流阻和传热性能影响的数值模拟[J]. 中国电机工程学报, 2010, 30(35):55-60. GAO M, ZHOU G B. Numerical simulations on heat transfer and flow resistance of oblique-cut semi-elliptic cylinder shell in rectangular channel[J]. Proceedings of the CSEE, 2010, 30(35):55-60.
[1] Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938.
[2] Xin DONG, Yongrui SHAN, Yinuo LIU, Ying FENG, Jianwei ZHANG. Numerical simulation of bubble plume vortex characteristics for non-Newtonian fluids [J]. CIESC Journal, 2023, 74(5): 1950-1964.
[3] Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927.
[4] Jian ZHAO, Xingchao ZHOU, Dan XIA, Hang DONG. Study on influence of mechanical stirring on heat transfer characteristics during jet heating of crude oil storage tank [J]. CIESC Journal, 2023, 74(5): 1982-1999.
[5] Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012.
[6] Junhua DING, Shurong YU, Shipeng WANG, Xianzhi HONG, Xin BAO, Xuexing DING. Flow simulation and sealing performance test of ultra-high speed dry gas seal under multiple effects [J]. CIESC Journal, 2023, 74(5): 2088-2099.
[7] Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949.
[8] Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033.
[9] Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973.
[10] Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981.
[11] Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548.
[12] Xiaoxuan WANG, Xiaohong HU, Yunan LU, Shiyong WANG, Fengxian FAN. Numerical simulation of flow characteristics in a rotating membrane filter [J]. CIESC Journal, 2023, 74(4): 1489-1498.
[13] Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679.
[14] Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538.
[15] Qianqian WANG, Mingyan LIU, Yongli MA. Study on the effect of ultrasonic degassing in water [J]. CIESC Journal, 2023, 74(4): 1693-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!