[1] |
郑体宽. 热力发电厂[M]. 北京:中国电力出版社, 2008. ZHENG T K. Thermal Power Plant[M]. Beijing:China Electric Power Press, 2008.
|
[2] |
王卓峰, 敦剑, 卢红波. 工业汽轮机的经济出力分界点[J]. 化工学报, 2012, 63(11):3579-3584. WANG Z F, DUN J, LU H B. Critical economic point of industrial turbines[J]. CIESC Journal, 2012, 63(11):3579-3584.
|
[3] |
王雷, 张欣刚, 王洪跃, 等. 基于支持向量回归算法的汽轮机热耗率模型[J]. 动力工程学报, 2007, 27(1):19-23. WANG L, ZHANG X G, WANG H Y, et al. The model of thermal energy consumption of steam turbine based on support vector regression algorithm[J]. Journal of Chinese Society of Power Engineering, 2007, 27(1):19-23.
|
[4] |
张文琴, 付忠广, 靳涛, 等. 基于偏最小二乘算法的热耗率回归分析[J]. 现代电力, 2009, 26(5):56-59. ZHANG W Q, FU Z G, JIN T, et al. Based on partial least squares algorithm, the heat rate regression analysis[J]. Modern Electric Power, 2009, 26(5):56-59.
|
[5] |
刘超, 牛培峰, 游霞. 反向建模方法在汽轮机热耗率建模中的应用[J]. 动力工程学报, 2014, 34(11):867-872. LIU C, NIU P F, YOU X. Application of inverse modeling method in the modeling of heat consumption rate of steam turbine[J]. Journal of Power Engineering, 2014, 34(11):867-872.
|
[6] |
刘超, 牛培峰, 段晓龙, 等. 基于相关向量机的汽轮机最优运行初压的确定[J]. 化工学报, 2016, 67(9):3812-3816. LIU C, NIU P F, DUAN X L, et al. Determination of optimal initial steam pressure of turbine based on relevance vector machine[J]. CIESC Journal, 2016, 67(9):3812-3816.
|
[7] |
朱誉, 冯利法, 徐治皋. 基于BP神经网络的热经济性在线计算模型[J]. 热力发电, 2008, 37(12):17-19. ZHU Y, FENG L F, XU Z G. Online calculation of steam turbine thermal performance based on BP neural network[J]. Thermal Power Generation, 2008, 37(12):17-19.
|
[8] |
LI G, NIU P, DUAN X, et al. Fast learning network:a novel artificial neural network with a fast learning speed[J]. Neural Computing and Applications, 2014, 24(7/8):1683-1695.
|
[9] |
DORIGO M, MANIEZZO V, COLOMI A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 1996, 26(1):29-41.
|
[10] |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks, 1995:1942-1948.
|
[11] |
KARABOGA D. An idea based on honey bee swarm for numerical optimization:technical report-TR06[R]. 2005:1-10.
|
[12] |
EUSUFF M M, LANSEY K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. American Society of Civil Engineers, 2003, 129(3):210-225.
|
[13] |
RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization:a novel method for constrained mechanical design optimization problems.[J]. Computer-Aided Design, 2011, 43(3):303-315.
|
[14] |
RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization:an optimization method for continuous non-linear large scale problems[J]. Information Sciences, 2012, 183(1):1-15.
|
[15] |
RAO R S, NARASIMHAM S V L, RAMALINGARAJU M. Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm[J]. Proceedings of World Academy of Science Engineering & Technolog, 2008, (45):116-122.
|
[16] |
PANDA S, SARANGI A, PANIGRAHI S P. A new training strategy for neural network using shuffled frog-leaping algorithm and application to channel equalization[J]. AEU-International Journal of Electronics and Communications, 2014, 68(11):1031-1036.
|
[17] |
NIU P, MA Y, LI M, et al. A kind of parameters self-adjusting extreme learning machine[J]. Neural Processing Letters, 2016, 44(3):813-830.
|
[18] |
ZIARATI K, AKBARI R, ZEIGHAMI V. On the performance of bee algorithms for resource-constrained project scheduling problem[J]. Applied Soft Computing, 2011, 11(4):3720-3733.
|
[19] |
VOUMVOULAKIS E M, HATZIARGYRIOU N D. A particle swarm optimization method for power system dynamic security control[J]. IEEE Transactions on Power Systems, 2010, 25(2):1032-1041.
|
[20] |
SAMANTA S, CHAKRABORTY S. Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm[J]. Engineering Applications of Artificial Intelligence, 2011, 24(6):946-957.
|
[21] |
HAN Y, SHI P. An improved ant colony algorithm for fuzzy clustering in image segmentation[J]. Neurocomputing, 2007, 70(4/5/6):665-671.
|
[22] |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67.
|
[23] |
SHI Y, EBERHART R. A modified particle swarm optimizer[C]//Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, The 1998 IEEE Conference on. IEEE, 1998:69-73.
|
[24] |
ZHANG J, SANDERSON A C. JADE:adaptive differential evolution with optional external archive[J]. Evolutionary Computation IEEE Transactions on, 2009, 13(5):945-958.
|
[25] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1):489-501.
|
[26] |
李国强. 新型人工智能技术研究及其在锅炉燃烧优化中的应用[D]. 秦皇岛:燕山大学, 2013. LI G Q. Research of a novel artificial intelligent technology and its application to boiler combustion optimization[D]. Qinhuangdao:Yanshan University, 2013.
|
[27] |
WATKINS W A, SCHEVILL W E. Aerial observations of feeding behavior in four baleen whales:Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus[J]. Journal of Mammalogy, 1979, 60(1):155-163.
|
[28] |
RAHNAMAYAN S, TIZHOOSH H R, SALAMA M M A. Opposition-based differential evolution (ODE) with variable jumping rate[C]//Foundations of Computational Intelligence, 2007. FOCI 2007. IEEE Symposium on. IEEE, 2007:81-88.
|
[29] |
RAHNAMAYAN S, TIZHOOSH H R, SALAMA M M A. Opposition-based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1):64-79.
|
[30] |
云曦, 阎维平. 火电厂汽轮机组影响热耗率计算的因素[J]. 东北电力技术, 2007, 28(3):15-18. YUN X, YAN W P. Factor effecting heat consumption calculation for steamed turbine of fossil-fired power plant[J]. Northeast Electric Power, 2007, 28(3):15-18.
|