[1] |
SUN Y, QI G, WANG Z, et al. Chaotic particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation, IEEE. 2002:320-324.
|
[2] |
QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2):398-417.
|
[3] |
WANG Y, CAI Z X, ZHANG Q F. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1):55-66.
|
[4] |
DORIGO M, GAMBARDELLA L M. Ant colony system:a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1):53-66.
|
[5] |
ELLABIB I, CALAMAI P, BASIR O. Exchange strategies for multiple ant colony system[J]. Information Sciences, 2007, 177(5):1248-1264.
|
[6] |
KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3):459-471.
|
[7] |
AKAY B, KARABOGA D. A modified artificial bee colony algorithm for real-parameter optimization[J]. Information Sciences, 2012, 192(1):120-142.
|
[8] |
WU B, QIAN C H. Differential artificial bee colony algorithm for global numerical optimization[J]. Journal of Computers, 2011, 6(5):841-848.
|
[9] |
LI X, LUO J, CHEN M R, et al. An improved shuffled frog-leaping algorithm with extremal optimization for continuous optimization[J]. Information Sciences, 2012, 192(6):143-151.
|
[10] |
NIKNAM T, NARIMANI M R, JABBARI M, et al. A modified shuffle frog leaping algorithm for multi-objective optimal power flow[J]. Energy, 2011, 36(11):6420-6432.
|
[11] |
LIN X, KE S, LI Z, et al. A fault diagnosis method of power systems based on improved objective function and genetic algorithm-Tabu search[J]. IEEE Transactions on Power Delivery, 2010, 25(3):1268-1274.
|
[12] |
PAN J L, YE X H, XUE Q. A new method for sequential fault diagnosis based on ant algorithm[C]//Computational Intelligence and Design, 2009. ISCID'09. Second International Symposium on. DOI:10.1109/ISCID.2009.18.
|
[13] |
KANG M, KIM J, KIM J M. Reliable fault diagnosis for incipient low-speed bearings using fault feature analysis based on a binary bat algorithm[J]. Information Sciences, 2015, 294(C):423-438.
|
[14] |
ZHAO J H, WANG N. A bio-inspired algorithm based on membrane computing and its application to gasoline blending scheduling[J]. Computers & Chemical Engineering, 2011, 35(2):272-283.
|
[15] |
CHEN C, YANG B L, YUAN J, et al. Establishment and solution of eight-lump kinetic model for FCC gasoline secondary reaction using particle swarm optimization[J]. Fuel, 2007, 86(15):2325-2332.
|
[16] |
CUADROS J F, MELO D C, FILHO R M, et al. Fluid catalytic cracking optimization using factorial design and genetic algorithm techniques[J]. Canadian Journal of Chemical Engineering, 2013, 91(2):279-290.
|
[17] |
栗伟, 苏宏业, 刘瑞兰. 粒子群优化算法在催化裂化模型参数估计中的应用[J]. 化工学报, 2010, 61(8):1927-1932. LI W, SU H Y, LIU R L. Parameter estimation of catalytic cracking model using PSO algorithm[J]. CIESC Journal, 2010, 61(8):1927-1932.
|
[18] |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67.
|
[19] |
牛培峰, 吴志良, 马云鹏, 等. 基于鲸鱼优化算法的汽轮机热耗率模型预测[J]. 化工学报, 2017, 68(3):1049-1057. NIU P F, WU Z L, MA Y P, et al. Prediction of steam turbine heat consumption rate based on whale[J]. CIESC Journal, 2017, 68(3):1049-1057.
|
[20] |
刘竹松, 李生. 正余混沌双弦鲸鱼优化算法[J]. 计算机工程与应用, 2017, DOI:10.3778/j.issn./002-8331.1610-0395. LIU Z S, LI S. Whale optimization algorithm based on chaotic sine cosine operator[J]. Computer Engineering and Applications, 2017, DOI:10.3778/j.issn./002-8331.1610-0395.
|
[21] |
LYNN N, SUGANTHAN P N. Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation[J]. Swarm & Evolutionary Computation, 2015, 24:11-24.
|
[22] |
TIZHOOSH H. Opposition-based learn:a new scheme for machine intelligence[C]//Proceedings of the International Conference on Computational Intelligence for Modeling Control and Automation. Vienna, Austria:IEEE, 2005:695-701.
|
[23] |
董明刚, 牛秦洲, 杨祥. 基于对立策略的螺栓遗传算法[J]. 计算机工程, 2009, 35(20):239-241. DONG M G, NIU Q Z, YANG X. Opposition-based stud genetic algorithm[J]. Computer Engineering, 2009, 35(20):239-241.
|
[24] |
RAHNAMAYAN S, TIZHOOSH H R, SALAMA M M A. Opposition-based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1):64-79.
|
[25] |
WANG H, LI H, LIU Y, et al. Opposition-based particle swarm algorithm with Cauchy mutation[C]//Evolutionary Computation, 2007. CEC 2007. IEEE Congress on. IEEE, 2007:4750-4756.
|
[26] |
WANG H, WU Z, RAHNAMAYAN S, et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181(20):4699-4714.
|
[27] |
周新宇, 吴志健, 王晖, 等. 一种精英反向学习的粒子群优化算法[J]. 电子学报, 2013, 41(8):1647-1652. ZHOU X Y, WU Z J, WANG H, et al. Elite opposition-based particle swarm optimization[J]. Acta Electronica Sinica, 2013, 41(8):1647-1652.
|
[28] |
LYNN N, SUGANTHAN P N. Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation[J]. Swarm & Evolutionary Computation, 2015, 24:11-24.
|
[29] |
韩崇仁, 陶宗乾, 王建平. 含硫渣油加工路线选择的探讨[J]. 当代石油石化, 2003, 11(7):14-19. HAN C R, TAO Z Q, WANG J P. Probing the choices of sulfur-containing residuum processing lines[J]. Petrochemical Industry Trends, 2003, 11(7):14-19.
|
[30] |
RUEDAVELÁSQUEZ R I, FREUND H, QIAN K, et al. Characterization of asphaltene building blocks by cracking under favorable hydrogenation conditions[J]. Energy & Fuels, 2013, 27(4):1817-1829.
|
[31] |
MENOUFY M F, AHMED H S, BETIHA M A, et al. A comparative study on hydrocracking and hydrovisbreaking combination for heavy vacuum residue conversion[J]. Fuel, 2014, 119(1):106-110.
|