[1] |
DINCER I.On Thermal Energy Storage Systems and Applications in Buildings[M].2nd ed.Chichester:John Wiley & Sons Ltd., 2011.
|
[2] |
李廷贤, 李卉, 闫霆, 等.大容量热化学吸附储热原理及性能分析[J].储能科学与技术, 2014, 3(3):236-243. LI T X, LI H, YAN T, et al.Performance analysis of high-capacity thermal energy storage using solid-gas thermochemical sorption Principle[J].Storage Science and Technology, 2014, 3(3)236-243.
|
[3] |
YU N, WANG R Z, WANG L W.Sorption thermal storage for solar energy[J].Progress in Energy and Combustion Science, 2013, 39(5): 489-514.
|
[4] |
XU J, WANG R Z, LI Y.A review of available technologies for seasonal thermal energy storage[J].Solar Energy, 2014, 103: 610-638.
|
[5] |
胡小冬, 高学农, 李得伦, 等.石蜡/膨胀石墨定形相变材料的性能[J].化工学报, 2013, 64(10):3831-3837. HU X D, GAO X N, LI D L, et al.Performance of paraffin/expanded graphite composite phase change material[J].CIESC Journal, 2013, 64(10):3831-3837.
|
[6] |
仵斯, 李廷贤, 闫霆, 等.高性能定形复合相变储能材料的制备及热性能[J].化工学报, 2015, 66(12):5127-5134. WU S, LI T X, YAN T, et al.Preparation and thermal properties of high performance shape-stabilized phase change composites using stearic acid and expanded graphite[J].CIESC Journal, 2015, 66(12):5127-5134.
|
[7] |
SHAHBAZ K, ALNASHEF I M, LIN R J T, et al.A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials[J].Solar Energy Materials and Solar Cells, 2016, 155: 147-154.
|
[8] |
GUNASEKARA S N, PAN R, CHIU J N, et al.Polyols as phase change materials for surplus thermal energy storage[J].Applied Energy, 2016, 162: 1439-1452.
|
[9] |
张敏, 卢允庄, 王如竹.沸石分子筛水吸附工质对的吸附性能及导热性能[J].太阳能学报, 2003, 24(1):37-40. ZHANG M, LU Y Z, WANG R Z.Experimental study on the adsorption and heat transfer performance of zeolite-water working pair[J], Acta Energiae Solaris Sinica, 2003, 24(1):37-40.
|
[10] |
白峰, 马鸿文.13X沸石分子筛的比表面积和孔分布[J].现代地质, 2008, 22(5):838-844. BAI F, MA H W.Specific surface area and pore size distribution of 13X zeolite molecular sieves[J].Geoscience, 2008, 22(5):838-844.
|
[11] |
SAY?LGAN?Ç, MOBEDI M, VLK S.Effect of regeneration temperature on adsorption equilibria and mass diffusivity of zeolite 13x-water pair[J].Microporous and Mesoporous Materials, 2016, 224: 9-16.
|
[12] |
N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al.A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J].Applied Energy, 2014, 124: 1-16.
|
[13] |
ZONDAG H, KIKKERT B, SMEDING S, et al.Prototype thermochemical heat storage with open reactor system[J].Applied Energy, 2013, 109: 360-365.
|
[14] |
POSERN K, KAPS C.Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2[J].Thermochimica Acta, 2010, 502(1/2): 73-76.
|
[15] |
GREKOVA A D, GIRNIK I S, NIKULIN V V,et al.New composite sorbents of water and methanol "salt in anodic alumina": evaluation for adsorption heat transformation[J].Energy, 2016, 106: 231-239.
|
[16] |
ARISTOV Y I, GLAZNEV I S, FRENI A, et al.Kinetics of water sorption on SWS-1L (calcium chloride confined to mesoporous silica gel): influence of grain size and temperature[J].Chemical Engineering Science, 2006, 61(5): 1453-1458.
|
[17] |
HONGOIS S, KUZNIK F, STEVENS P, et al.Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage[J].Solar Energy Materials and Solar Cells, 2011, 95(7): 1831-1837.
|
[18] |
CHAN K C, CHAO C Y H, WU C L.Measurement of properties and performance prediction of the new MWCNT-embedded zeolite 13X/CaCl2 composite adsorbents[J].International Journal of Heat and Mass Transfer, 2015, 89: 308-319.
|
[19] |
WHITING G, GRONDIN D, BENNICI S, et al.Heats of water sorption studies on zeolite-MgSO4 composites as potential thermochemical heat storage materials[J].Solar Energy Materials and Solar Cells, 2013, 112: 112-119.
|
[20] |
WHITING G T, GRONDIN D, et al.Zeolite-MgCl2 composites as potential long-term heat storage materials: influence of zeolite properties on heats of water sorption[J].Solar Energy Materials and Solar Cells, 2014, 128: 289-295.
|