[1] |
FANG G Y, CHEN Z, LI H. Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials[J]. Chem. Eng. J., 2010, 163:154-159.
|
[2] |
?AHAN N, PAKSOY H. Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials[J]. Sol. Energy Mater. Sol. Cells, 2017, 159:1-7.
|
[3] |
MAZMAN M, CABEZA L F, MEHLING H, et al. Utilization of phase change materials in solar domestic hot water systems[J]. Renew. Energy, 2009, 34:1639-1643.
|
[4] |
XU B, LI P W, CHAN C. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants:a review to recent developments[J]. Appl. Energy, 2015, 160:286-307.
|
[5] |
WANG T, MANTHA D, REDDY R G. Novel low melting point quaternary eutectic system for solar thermal energy storage[J]. Appl. Energy, 2013, 102:1422-1429.
|
[6] |
KENISARIN M, MAHKAMOV K. Solar energy storage using phase change materials[J]. Renew. Sustain. Energy Rev., 2007, 11:1913-1965.
|
[7] |
SOARES N, COSTA J J, GASPAR A R, et al. Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency[J]. Energy Build., 2013, 59:82-103.
|
[8] |
KENISARIN M, MAHKAMOV K. Passive thermal control in residential buildings using phase change materials[J]. Renew. Sustain. Energy Rev., 2016, 55:371-398.
|
[9] |
TYAGI V V, PANDEY A K, BUDDHI D, et al. Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings[J]. Energy Build, 2016, 117:44-52.
|
[10] |
BENLI H, DURMUS A. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating[J]. Sol. Energy, 2009, 83:2109-2119.
|
[11] |
WANG X L, DENNIS M. An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications[J]. Chem. Eng. Sci., 2015, 137:938-946.
|
[12] |
AL-ABIDI A A, MAT S B, SOPIAN K, et al. Review of thermal energy storage for air conditioning systems[J]. Renew. Sustain. Energy Rev., 2012, 16:5802-5819.
|
[13] |
GIL A, ORO E, MIRO L, et al. Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration[J]. Int. J. Refrig., 2014, 39:95-103.
|
[14] |
TAN F L, TSO C P. Cooling of mobile electronic devices using phase change materials[J]. Appl. Therm. Eng., 2004, 24:159-169.
|
[15] |
ALAY S, GODE F, ALKAN C. Synthesis and thermal properties of poly(n-butylacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics[J]. J. Appl. Polym. Sci., 2011, 120(5):2821-2829.
|
[16] |
SARIER N, ONDER E. Organic phase change materials and their textile applications:an overview[J]. Thermochimica Acta, 2012, 540:7-60.
|
[17] |
?AHAN N, FOIS M, PAKSOY H. The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material[J]. Int. J. Energy Res., 2016, 40:198-206.
|
[18] |
LI G, ZHANG B B, LI X, et al. The preparation, characterization and modification of a new phase change material:CaCl2·6H2O-MgCl2·6H2O eutectic hydrate salt[J]. Sol. Energy Mater. Sol. Cells, 2014, 126:51-55.
|
[19] |
DUAN Z J, ZHANG H Z, SUN L X, et al. CaCl2·6H2O/expanded graphite composite as form-stable phase change materials for thermal energy storage[J]. J. Therm. Anal. Calorim., 2014, 115:111-117.
|
[20] |
LANE G A. Adding strontium chloride or calcium hydroxide to calcium chloride hexahydrate heat storage material[J]. Sol. Energy, 1981, 1:73-75.
|
[21] |
BILEN K, TAKGIL F, KAYGUSUZ K. Thermal energy storage behavior of CaCl2·6H2O during melting and solidification[J]. Energy Sources, Part A, 2008, 30:775-787.
|
[22] |
LI X, ZHOU Y, NIAN H G, et al. Phase change behavior of latent heat storage media based on calcium chloride hexahydrate composites containing strontium chloride hexahydrate and oxidation expandable graphite[J]. Appl. Therm. Eng., 2016, 102:38-44.
|
[23] |
TYAGI V V, KAUSHIK S C, PANDEY A K, et al. Experimental study of the supercooling and pH behavior of a typical phase change material for thermal energy storage[J]. Indian J. Pure Appl. Phys., 2011, 49:117-125.
|
[24] |
TYAGI V V, BUDDHI D. Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage[J]. Sol. Energy Mater. Sol. Cells, 2008, 92:891-899.
|
[25] |
张仁元. 相变材料与相变储能技术[M]. 北京:科学出版社, 2008. ZHANG R Y. Phase Change Materials and Phase Change Energy Storage Technology[M]. Beijing:Science Press, 2008.
|
[26] |
GUNTHER E, LI H, MEHLING H, et al. Subcooling in PCM emulsions(part 2):Interpretation in terms of nucleation theory[J]. Thermochimica Acta, 2011, 522:199-204.
|
[27] |
RHAFIKI T E, KOUSKSOU T, JAMIL A, et al. Crystallization of PCMs inside an emulsion:supercooling phenomenon[J]. Sol. Energy Mater. Sol. Cells, 2011, 95:2588-2597.
|
[28] |
CABEZA L F, SVENSSON G, HIEBLER S, et al. Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material[J]. Appl. Therm. Eng., 2003, 23:1697-1704.
|
[29] |
HU P, LU D J, FAN X Y, et al. Phase change performance of sodium acetate trihydrate with AlN nanoparticles and CMC[J]. Sol. Energy Mater. Sol. Cells, 2011, 95:2645-2649.
|
[30] |
SHIN H K, PARK M, KIM H Y, et al. Thermal property and latent heat energy storage behavior of sodium acetate trihydrate composites containing expanded graphite and carboxymethyl cellulose for phase change materials[J]. Appl. Therm. Eng., 2015, 75:978-983.
|