[1] |
CHAO J, BAUWENS C, DOROFEEV S B. An analysis of peak overpressures in vented gaseous explosions[J]. Proceedings of the Combustion Institute, 2011, 33(2):2367-2374.
|
[2] |
QI S, DU Y, WANG S M, et al. The effect of vent size and concentration in vented gasoline-air explosions[J]. Journal of Loss Prevention in the Process Industries, 2016, 44:88-94.
|
[3] |
FAKANDU B M, ANDREWS G E, PHYLAKTOU H N. Vent burst pressure effects on vented gas explosion reduced pressure[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:429-438.
|
[4] |
KUZNETSOV M, FRIEDRICH A, STERN G, et al. Medium-scale experiments on vented hydrogen deflagration[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:416-428.
|
[5] |
TOMLIN G, JOHNSON D M, CRONIN P, et al. The effect of vent size and congestion in large-scale vented natural gas/air explosions[J]. Journal Loss Prevention in the Process Industries, 2015, 35:169-181.
|
[6] |
GUO J, SUN X X, RUI S C, et al. Effect of ignition position on vented hydrogen-air explosions[J]. International Journal of Hydrogen Energy, 2015, 40(45):15780-15788.
|
[7] |
GUO J, LI Q, CHEN D D, et al. Effect of burst pressure on vented hydrogen-air explosion in a cylindrical vessel[J]. International Journal of Hydrogen Energy, 2015, 40(19):6478-6486.
|
[8] |
BAUWENS C, CHAFFEE J, DOROFEEV S B. Vented explosion overpressures from combustion of hydrogen and hydrocarbon mixtures[J]. International Journal of Hydrogen Energy, 2011, 36(3):2329-2336.
|
[9] |
GUO J, WANG C J, LIU X Y. Experimental study on duct-vented explosion of hydrogen-air mixtures in a wide range of equivalence ratio[J]. Industrial & Engineering Chemistry Research, 2016, 55(35):9518-9523.
|
[10] |
BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures[J]. Fuel, 2016, 175:40-48.
|
[11] |
BAUWENS C, CHAFFEE J, DOROFEEV S. Experimental and numerical study of methane-air deflagrations in a vented enclosure[J]. Fire Safety Science, 2008, 9:1043-1054.
|
[12] |
KEENAN J, MAKAROV D V, MOLKOV V. Rayleigh-Taylor instability:modeling and effect on coherent deflagrations[J]. International Journal of Hydrogen Energy, 2014, 39(35):20467-20473.
|
[13] |
QUILLATRE P, VERMOREL O, POINSOT T, et al. Large eddy simulation of vented deflagration[J]. Industrial & Engineering Chemistry Research, 2013, 52(33):11414-11423.
|
[14] |
YAN X Q, YU J L, GAO W. Flame behaviors and pressure characteristics of vented dust explosions at elevated static activation overpressures[J]. Journal of Loss Prevention in the Process Industries, 2015, 33:101-108.
|
[15] |
MA Q J, ZHANG Q, PANG L, et al. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air[J]. Journal of Loss Prevention in the Process Industries, 2014, 27:65-73.
|
[16] |
MAKAROV D, VERBECKE F, MOLKOV V. Numerical analysis of hydrogen deflagration mitigation by venting through a duct[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6):433-438.
|
[17] |
LEE H G, KIM J. Numerical simulation of the three-dimensional Rayleigh-Taylor instability[J]. Computers & Mathematics with Applications, 2013, 66(8):1466-1474.
|
[18] |
SARLI D V, BENEDETTO D A, RUSSO G. Using large eddy simulation for understanding vented gas explosions in the presence of obstacles[J]. Journal of Hazardous Materials, 2009, 169(1/2/3):435-442.
|
[19] |
VYAZMINA E, JALLAIS S. Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions:effects of concentration, obstruction vent area and ignition position[J]. International Journal of Hydrogen Energy, 2016, 41(33):15101-15109.
|
[20] |
BAUWENS C R, DOROFEEV S B. Effect of initial turbulence on vented explosion overpressures from lean hydrogen-air deflagrations[J]. International Journal of Hydrogen Energy, 2014, 39(35):20509-20515.
|
[21] |
李阳超, 杜扬, 王世茂, 等. 端部开口受限空间汽油蒸气爆燃超压特性研究[J]. 中国安全生产科学技术, 2016, 12(7):32-36. LI Y C, DU Y, WANG S M, et al. Study on characteristics of deflagration overpressure for gasoline vapor in confined space with end opening[J]. Journal of Safety Science and Technology, 2016, 12(7):32-36.
|
[22] |
吴松林, 杜扬, 欧益宏, 等. 圆柱形管道旁侧油气泄爆实验研究[J]. 爆炸与冲击, 2016, 36(5):680-687. WU S L, DU Y, OU Y H, et al, Experimental study for lateral gasoline-air venting explosion in cylindrical pipeline[J]. Explosion and Shock Wave, 2016, 36(5):680-687.
|
[23] |
姜孝海, 范宝春, 叶经方. 泄爆诱导的湍流、旋涡和外部爆炸[J]. 应用数学和力学, 2004, 25(12):1271-1277. JIANG X H, FAN B C, YE J F. Turbulence, vortex and external explosion induced by venting[J]. Applied Mathematics and Mechanics, 2004, 25(12):1271-1277.
|
[24] |
王世茂, 杜扬, 张少波, 等. 顶部开口条件下油罐油气爆炸数值模拟[J]. 后勤工程学院学报, 2015, 31(4):51-56. WANG S M, DU Y, ZHANG S B, et al. Numerical simulation research on fuel-air mixture explosion in the oil tank with an open top[J]. Journal of Logistical Engineering University, 2015, 31(4):51-56.
|
[25] |
王世茂, 杜扬, 李阳超, 等. 含弱约束结构受限空间油气爆炸外部火焰特性[J]. 后勤工程学院学报, 2016, 32(5):39-43. WANG S M, DU Y, LI Y C, et al. External flame characteristics of gasoline-air mixture explosion in confined space with weakly constrained structure[J]. Journal of Logistical Engineering University, 2015, 32(5):39-43.
|
[26] |
张培理. 受限空间油气爆炸及其抑制实验与数值分析研究[D]. 重庆:后勤工程学院, 2015. ZHANG P L. Study on experiment and numerical analysis of gasoline-air mixture explosion in confined space[D]. Chongqing:Logistical Engineering University, 2015.
|
[27] |
LI G, DU Y, QI S, et al. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure[J]. Journal of Loss Prevention in the Process Industries, 2016, 43:529-536.
|
[28] |
ZHANG P L, DU Y, WU S L, et al. Flame regime estimations of gasoline explosion in a tube[J]. Journal of Loss Prevention in the Process Industries, 2015, 33:304-310.
|
[29] |
HU E, TIAN H, ZHANG X, et al. Explosion characteristics of n-butanol/iso-octane-air mixtures[J]. Fuel, 2017, 188:90-97.
|
[30] |
王世茂. 含弱约束结构受限空间油气爆炸特性实验研究与数值模拟[D]. 重庆:后勤工程学院, 2016. WANG S M. Experimental study and numerical simulation on gasoline-air mixture explosion in the confined space with weakly confined structure[D]. Chongqing:Logistical Engineering University, 2016.
|
[31] |
CASHDOLLAR K L, ZLOCHOWER A I, GREEN G M, et al. Flammability of methane, propane, and hydrogen gases[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3/4/5):327-340.
|