CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 1884-1895.DOI: 10.11949/0438-1157.20221492
• Thermodynamics • Previous Articles Next Articles
Yurong DANG(), Chunlan MO(
), Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI
Received:
2022-11-15
Revised:
2023-04-17
Online:
2023-06-29
Published:
2023-05-05
Contact:
Chunlan MO
党玉荣(), 莫春兰(
), 史科锐, 方颖聪, 张子杨, 李作顺
通讯作者:
莫春兰
作者简介:
党玉荣(1993—),男,硕士研究生,D1908460831@outlook.com
基金资助:
CLC Number:
Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture[J]. CIESC Journal, 2023, 74(5): 1884-1895.
党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895.
工质 | 化学式 | M/(kg/kmol) | Tcri/℃ | pcri/MPa | GWP(100 a) | ODP | TLV_TWA |
---|---|---|---|---|---|---|---|
R601a(异戊烷) | C5H12 | 72.15 | 187.2 | 3.38 | 20 | 0 | 600 |
R600(丁烷) | C4H10 | 58.12 | 152.0 | 3.80 | 20 | 0 | 800 |
Table 1 Physical properties of working fluids[21]
工质 | 化学式 | M/(kg/kmol) | Tcri/℃ | pcri/MPa | GWP(100 a) | ODP | TLV_TWA |
---|---|---|---|---|---|---|---|
R601a(异戊烷) | C5H12 | 72.15 | 187.2 | 3.38 | 20 | 0 | 600 |
R600(丁烷) | C4H10 | 58.12 | 152.0 | 3.80 | 20 | 0 | 800 |
部件 | 能量平衡等式 |
---|---|
蒸发器 | |
泵 | |
汽轮机 | |
冷凝器 |
Table 2 Energy equations of ORC components
部件 | 能量平衡等式 |
---|---|
蒸发器 | |
泵 | |
汽轮机 | |
冷凝器 |
Item | T4/℃ | T1/℃ | p2/MPa | Qeva/kW | Wnet/kW | ηth/% |
---|---|---|---|---|---|---|
R134[ | 49.63 | 28.08 | 2.076 | 177.77 | 14.83 | 8.30 |
simulation | 49.62 | 28.08 | 2.076 | 203.76 | 15.62 | 8.36 |
error/% | 0.02 | 0 | 0 | 0.11 | 0.34 | 0.72 |
Table 3 Comparison of the present work with the literature[29]
Item | T4/℃ | T1/℃ | p2/MPa | Qeva/kW | Wnet/kW | ηth/% |
---|---|---|---|---|---|---|
R134[ | 49.63 | 28.08 | 2.076 | 177.77 | 14.83 | 8.30 |
simulation | 49.62 | 28.08 | 2.076 | 203.76 | 15.62 | 8.36 |
error/% | 0.02 | 0 | 0 | 0.11 | 0.34 | 0.72 |
参数 | Wnet | ηth | εex | APR | ICPP | ECE | Exc | 权重 |
---|---|---|---|---|---|---|---|---|
Wnet | 1 | 2 | 2 | 1/4 | 1/4 | 1/5 | 1/5 | ω1 |
ηth | 1/2 | 1 | 1 | 1/3 | 1/3 | 1/7 | 1/7 | ω2 |
εex | 1/2 | 1 | 1 | 1/3 | 1/3 | 1/7 | 1/7 | ω3 |
APR | 4 | 3 | 3 | 1 | 1 | 1/2 | 1/2 | ω4 |
ICPP | 4 | 3 | 3 | 1 | 1 | 1/2 | 1/2 | ω5 |
ECE | 5 | 7 | 7 | 2 | 2 | 1 | 1 | ω6 |
Exc | 5 | 7 | 7 | 2 | 2 | 1 | 1 | ω7 |
Table 4 Pairwise comparison between two sub goal objectives
参数 | Wnet | ηth | εex | APR | ICPP | ECE | Exc | 权重 |
---|---|---|---|---|---|---|---|---|
Wnet | 1 | 2 | 2 | 1/4 | 1/4 | 1/5 | 1/5 | ω1 |
ηth | 1/2 | 1 | 1 | 1/3 | 1/3 | 1/7 | 1/7 | ω2 |
εex | 1/2 | 1 | 1 | 1/3 | 1/3 | 1/7 | 1/7 | ω3 |
APR | 4 | 3 | 3 | 1 | 1 | 1/2 | 1/2 | ω4 |
ICPP | 4 | 3 | 3 | 1 | 1 | 1/2 | 1/2 | ω5 |
ECE | 5 | 7 | 7 | 2 | 2 | 1 | 1 | ω6 |
Exc | 5 | 7 | 7 | 2 | 2 | 1 | 1 | ω7 |
参数 | 综合性能指标F1 | 综合性能指标F2 | TOPSIS[ |
---|---|---|---|
权重(ω1∶ω2∶ω3∶ω4∶ω5∶ω6∶ω7) | 5.5∶4.1∶4.1∶14.6∶14.6∶28.6∶28.6 | 14.3∶14.3∶14.3∶14.3∶14.3∶14.3∶14.3 | — |
T2/℃ | 137.2 | 119.1 | 112.3 |
mf /% | 0.33 | 12.4 | 8.6 |
Wnet /kW | 62.9 | 101.1 | 108.3 |
ηth /% | 15.8 | 14.8 | 14.0 |
εex /% | 48.7 | 48.9 | 47.6 |
APR /(m2/kW) | 4.3 | 4.7 | 4.8 |
ICPP /a | 6.6 | 6.1 | 6.3 |
ECE /t | 25.0 | 42.1 | 46.2 |
Exc /W | 4.0 | 8.8 | 9.3 |
Table 5 Optimization results of comprehensive performance index F compared with TOPSIS[7]
参数 | 综合性能指标F1 | 综合性能指标F2 | TOPSIS[ |
---|---|---|---|
权重(ω1∶ω2∶ω3∶ω4∶ω5∶ω6∶ω7) | 5.5∶4.1∶4.1∶14.6∶14.6∶28.6∶28.6 | 14.3∶14.3∶14.3∶14.3∶14.3∶14.3∶14.3 | — |
T2/℃ | 137.2 | 119.1 | 112.3 |
mf /% | 0.33 | 12.4 | 8.6 |
Wnet /kW | 62.9 | 101.1 | 108.3 |
ηth /% | 15.8 | 14.8 | 14.0 |
εex /% | 48.7 | 48.9 | 47.6 |
APR /(m2/kW) | 4.3 | 4.7 | 4.8 |
ICPP /a | 6.6 | 6.1 | 6.3 |
ECE /t | 25.0 | 42.1 | 46.2 |
Exc /W | 4.0 | 8.8 | 9.3 |
1 | Yang M H. Payback period investigation of the organic Rankine cycle with mixed working fluids to recover waste heat from the exhaust gas of a large marine diesel engine[J]. Energy Conversion and Management, 2018, 162: 189-202. |
2 | Cui X Y, Zhang H Y, Guo J F, et al. Analysis of two-stage waste heat recovery based on natural gas-fired boiler[J]. International Journal of Energy Research, 2019, 43(14): 8898-8912. |
3 | Cui Z Y, Du Q, Gao J M. Development of integrated technology for waste heat recovery from humid flue gas of hot water boiler[J]. International Journal of Energy Research, 2021, 45(13): 19560-19573. |
4 | Li X Y, Xu B, Tian H, et al. Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111207. |
5 | Lu P, Luo X L, Wang J, et al. Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation[J]. Energy Conversion and Management, 2021, 230: 113771. |
6 | Valencia G, Fontalvo A, Forero J D. Optimization of waste heat recovery in internal combustion engine using a dual-loop organic Rankine cycle: thermo-economic and environmental footprint analysis[J]. Applied Thermal Engineering, 2021, 182: 116109. |
7 | Ouyang T C, Su Z X, Zhao Z K, et al. Advanced exergo-economic schemes and optimization for medium-low grade waste heat recovery of marine dual-fuel engine integrated with accumulator[J]. Energy Conversion and Management, 2020, 226: 113577. |
8 | Miao Z, Li Z H, Zhang K, et al. Selection criteria of zeotropic mixtures for subcritical organic Rankine cycle based on thermodynamic and thermo-economic analysis[J]. Applied Thermal Engineering, 2020, 180: 115837. |
9 | 汪健生, 岳开红. 窄点温差匹配对ORC系统性能的影响[J]. 机械工程学报, 2017, 53(8): 158-165. |
Wang J S, Yue K H. Effect of pinch point temperature difference assignment on the thermal performance of ORC system[J]. Journal of Mechanical Engineering, 2017, 53(8): 158-165. | |
10 | Wang J S, Diao M Z, Yue K H. Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method[J]. Energy, 2017, 141: 97-107. |
11 | Reshaeel M, Javed A, Jamil A, et al. Multiparametric optimization of a reheated organic Rankine cycle for waste heat recovery based repowering of a degraded combined cycle gas turbine power plant[J]. Energy Conversion and Management, 2022, 254: 115237. |
12 | Imran M, Usman M, Park B S, et al. Comparative assessment of organic Rankine cycle integration for low temperature geothermal heat source applications[J]. Energy, 2016, 102: 473-490. |
13 | 顾煜炯, 耿直, 谢典. 太阳能有机朗肯循环系统性能分析及综合评价[J]. 太阳能学报, 2018, 39(2): 482-490. |
Gu Y J, Geng Z, Xie D. Performance analysis and comprehensive evaluation of organic Rankine cycle system driven by solar energy[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 482-490. | |
14 | Georgousopoulos S, Braimakis K, Grimekis D, et al. Thermodynamic and techno-economic assessment of pure and zeotropic fluid ORCs for waste heat recovery in a biomass IGCC plant[J]. Applied Thermal Engineering, 2021, 183: 116202. |
15 | 顾煜炯, 陈礼敏, 耿直. 不同太阳能热源下混合工质ORC系统性能分析[J]. 发电技术, 2018, 39(2): 177-187. |
Gu Y J, Chen L M, Geng Z. Performance analysis of ORC system for non-zeotropic mixtures under different solar energy sources[J]. Power Generation Technology, 2018, 39(2): 177-187. | |
16 | Liu P, Shu G Q, Tian H, et al. Preliminary experimental comparison and feasibility analysis of CO2/R134a mixture in organic Rankine cycle for waste heat recovery from diesel engines[J]. Energy Conversion and Management, 2019, 198: 111776. |
17 | Li J, Duan Y Y, Yang Z, et al. Exergy analysis of novel dual-pressure evaporation organic Rankine cycle using zeotropic mixtures[J]. Energy Conversion and Management, 2019, 195: 760-769. |
18 | Shahrooz M, Lundqvist P, Nekså P. Performance of binary zeotropic mixtures in organic Rankine cycles (ORCs)[J]. Energy Conversion and Management, 2022, 266: 115783. |
19 | Wang E H, Zhang M R, Meng F X, et al. Zeotropic working fluid selection for an organic Rankine cycle bottoming with a marine engine[J]. Energy, 2022, 243: 123097. |
20 | 林蝶蝶. 有机朗肯循环的综合性能评价与工质选择[D]. 天津: 天津大学, 2016. |
Lin D D. Comprehensive performance evaluation of organic Rankine cycle and working fluid selection[D]. Tianjin: Tianjin University, 2016. | |
21 | Li J, Liu Q, Duan Y Y, et al. Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation[J]. Applied Energy, 2017, 190: 376-389. |
22 | Geng D H, Du Y H, Yang R L. Performance analysis of an organic Rankine cycle for a reverse osmosis desalination system using zeotropic mixtures[J]. Desalination, 2016, 381: 38-46. |
23 | Sohrabi A, Behbahaninia A, Sayadi S. Thermodynamic optimization and comparative economic analysis of four organic Rankine cycle configurations with a zeotropic mixture[J]. Energy Conversion and Management, 2021, 250: 114872. |
24 | Sun Z, Aziz M. Comparative thermodynamic and techno-economic assessment of green methanol production from biomass through direct chemical looping processes[J]. Journal of Cleaner Production, 2021, 321: 129023. |
25 | Bejan A, Tsatsaronis G, Moran M. Thermal Design and Optimization[M]. Hoboken, NJ: Wiley-Interscience, 1995. |
26 | Ding Y, Liu C, Zhang C, et al. Exergoenvironmental model of organic Rankine cycle system including the manufacture and leakage of working fluid[J]. Energy, 2018, 145: 52-64. |
27 | Zhang C, Liu C, Xu X X, et al. Energetic, exergetic, economic and environmental (4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles[J]. Energy, 2019, 168: 332-345. |
28 | Dewulf J, van Langenhove H, Dirckx J. Exergy analysis in the assessment of the sustainability of waste gas treatment systems[J]. Science of the Total Environment, 2001, 273(1/2/3): 41-52. |
29 | Baik Y J, Kim M, Chang K C, et al. A comparative study of power optimization in low-temperature geothermal heat source driven R125 transcritical cycle and HFC organic Rankine cycles[J]. Renewable Energy, 2013, 54: 78-84. |
30 | Ouyang T C, Su Z X, Huang G C, et al. Modeling and optimization of a combined cooling, cascaded power and flue gas purification system in marine diesel engines[J]. Energy Conversion and Management, 2019, 200: 112102. |
[1] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[2] | Zihang LI, Zhanbo WANG, Zheng MIAO, Xianbing JI. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle [J]. CIESC Journal, 2021, 72(9): 4487-4495. |
[3] | CAO Jian, FENG Xin, JI Xiaoyan, LU Xiaohua. Study on the theoretical limit performance of multi-pressure evaporation ORC based on zeotropic mixture [J]. CIESC Journal, 2021, 72(7): 3780-3787. |
[4] | RONG-YANG Yiming, WU Qiaoxian, ZHOU Xia, FANG Song, WANG Kai, QIU Limin, ZHI Xiaoqin. Research on optimization of self-utilization performance of air compression waste heat in air separation system [J]. CIESC Journal, 2021, 72(3): 1654-1666. |
[5] | Chaonan CHEN, Xianglong LUO, Zhi YANG, Renlong HUANG, Pei LU, Jianyong CHEN, Ying CHEN. Thermo-economic modelling and optimization of a zeotropic organic Rankine cycle with composition adjustment [J]. CIESC Journal, 2020, 71(5): 2373-2381. |
[6] | Yong MING, Yannan PENG, Wen SU, Guolong WEI, Qiang WANG, Naijun ZHOU, Li ZHAO. Thermodynamic performance comparison of ORC between mixtures and pure fluids under closed heat source [J]. CIESC Journal, 2020, 71(4): 1570-1579. |
[7] | Yupeng WANG, Junwei LIANG, Xianglong LUO, Yifan LI, Jianyong CHEN, Ying CHEN. Novel prediction method of process and system performance for organic Rankine cycle based on neural network [J]. CIESC Journal, 2019, 70(9): 3256-3266. |
[8] | Zhonglan HOU, Xinli WEI, Xinling MA, Xiangrui MENG. Experimental analysis of circulating water flow rate on performance of ORC waste heat power generation system [J]. CIESC Journal, 2019, 70(9): 3283-3290. |
[9] | Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733. |
[10] | Peng LI, Zhonghe HAN, Xiaoqiang JIA, Zhongkai MEI, Xu HAN. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system [J]. CIESC Journal, 2019, 70(4): 1532-1541. |
[11] | YOU Huailiang, HAN Jitian, LIU Yang. Thermodynamic analysis of micro tri-generation system based on SOFC/MGT/ORC [J]. CIESC Journal, 2018, 69(S2): 300-308. |
[12] | PAN Quanwen, WANG Ruzhu. Analysis on performance of thermally driven cooling and power cogeneration system with dual working mode [J]. CIESC Journal, 2018, 69(S2): 373-378. |
[13] | WU Yuting, ZHAO Yingkun, LEI Biao, MENG Qingpeng, CHEN Rumeng, ZHI Ruiping, MA Chongfang. Effect of cooling water flow rate on power generation of organic Rankine cycle system [J]. CIESC Journal, 2018, 69(6): 2639-2645. |
[14] | HAN Zhonghe, MEI Zhongkai, LI Peng. Working fluid selection and multi-objective optimization of organic Rankine cycle with variable turbine efficiency [J]. CIESC Journal, 2018, 69(6): 2603-2611. |
[15] | HUANG Renlong, LUO Xianglong, LIANG Zhihui, CHEN Ying. Multi-objective optimization of Rankine cycle using R245fa/pentane based on liquid-vapor separation [J]. CIESC Journal, 2018, 69(5): 2040-2048. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 223
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 209
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||