[1] |
丁宇奇. 立式拱顶储罐超压破坏机理与弱顶结构研究[D]. 大庆:东北石油大学, 2014. DING Y Q. Research on broken mechanism of vertical dome roof tank overpressure and weak roof structure[D]. Daqing:Northeast Petroleum University, 2014.
|
[2] |
MERCX M, VAN DEN BERG C.The explosion blast prediction model in the revised "Yellow Book"//The 31stAnnual Loss Prevention Meeting. Houston, 1997.
|
[3] |
BJERKETVEDT D, BAAKE J, WINGERDEN K. Gas explosion handbook[J]. Journal of Hazardous Materials, 1997, (52):1-150.
|
[4] |
BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures[J]. Fuel, 2016, 175:40-48.
|
[5] |
BAUWENS C, CHAFFEE J, DOROFEEV S B. Vented explosion overpressures from combustion of hydrogen and hydrocarbon mixtures[J]. International Journal of Hydrogen Energy, 2011, 36(3):2329-2336.
|
[6] |
BAUWENS C R, DOROFEEV S B. Effect of initial turbulence on vented explosion overpressures from lean hydrogen-air deflagrations[J]. International Journal of Hydrogen Energy, 2014, 39(35):20509-20515.
|
[7] |
BAUWENS C, CHAFFEE J, DOROFEEV S. Experimental and numerical study of methane-air deflagrations in a vented enclosure[J]. Fire Safety Science, 2008, 9:1043-1054.
|
[8] |
BAUWENS C. Effect of ignition location, vent size, and obstacles on vented explosion overpressures in propane-air mixtures[J]. Combustion Science and Technology, 2010, 182:1915-1932.
|
[9] |
CHAO J, BAUWENS C, DOROFEEV S B. An analysis of peak overpressures in vented gaseous explosions[J]. Proceedings of the Combustion Institute, 2011, 33(2):2367-2374.
|
[10] |
FAKANDU B. The venting of hydrogen-air explosions in an enclosure with L/D=2.8[C]//Proc. Ninth International Symposium on Hazardous Process Materials and Industrial Explosions (IX ISHPMIE). Krakow, 2012.
|
[11] |
FAKANDU B M, ANDREWS G E, PHYLAKTOU H N. Vent burst pressure effects on vented gas explosion reduced pressure[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:429-438.
|
[12] |
GUO J, SUN X X, RUI S C, et al. Effect of ignition position on vented hydrogen-air explosions[J]. International Journal of Hydrogen Energy, 2015, 40(45):15780-15788.
|
[13] |
GUO J, WANG C J, LIU X Y. Experimental study on duct-vented explosion of hydrogen-air mixtures in a wide range of equivalence ratio[J]. Industrial & Engineering Chemistry Research, 2016, 55(35):9518-9523.
|
[14] |
KEENAN J, MAKAROV D V, MOLKOV V. Rayleigh-Taylor instability:modeling and effect on coherent deflagrations[J]. International Journal of Hydrogen Energy, 2014, 39(35):20467-20473.
|
[15] |
KUZNETSOV M, FRIEDRICH A, STERN G, et al. Medium-scale experiments on vented hydrogen deflagration[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:416-428.
|
[16] |
MA Q J, ZHANG Q, PANG L, et al. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air[J]. Journal of Loss Prevention in the Process Industries, 2014, 27:65-73.
|
[17] |
QI S, DU Y, WANG S M, et al. The effect of vent size and concentration in vented gasoline-air explosions[J]. Journal of Loss Prevention in the Process Industries, 2016, 44:88-94.
|
[18] |
QUILLATRE P, VERMOREL O, POINSOT T, et al. Large eddy simulation of vented deflagration[J]. Industrial & Engineering Chemistry Research, 2013, 52(33):11414-11423.
|
[19] |
ROCOURT X, AWAMAT S, SOCHET I, et al. Vented hydrogen-air deflagration in a small enclosed volume[J]. International Journal of Hydrogen Energy, 2014, 39(35):20462-20466.
|
[20] |
SCHIAVETTI M, MARANGON A, CARCASSI M. Experimental study of vented hydrogen deflagration with ignition inside and outside the vented volume[J]. International Journal of Hydrogen Energy, 2014, 39(35):20455-20461.
|
[21] |
TOMLIN G, JOHNSON D M, CRONIN P, et al. The effect of vent size and congestion in large-scale vented natural gas/air explosions[J]. Journal of Loss Prevention in the Process Industries, 2015, 35:169-181.
|
[22] |
TASCON A, AGUADO P J. CFD simulations to study parameters affecting dust explosion venting in silos[J]. Powder Technology, 2015, 272:132-141.
|
[23] |
VYAZMINA E, JALLAIS S. Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions:effects of concentration, obstruction vent area and ignition position[J]. International Journal of Hydrogen Energy, 2016, 41(33):15101-15109.
|
[24] |
SARLI D, BENEDETTO A, RUSSO G. Using large eddy simulation for understanding vented gas explosions in the presence of obstacles[J]. Journal of Hazardous Materials, 2009, 169(1/2/3):435-442.
|
[25] |
杜扬, 王世茂, 齐圣, 等. 油气在顶部含弱约束结构受限空间内的爆炸特性[J]. 爆炸与冲击, 2017, 37(1):53-60. DU Y, WANG S M, QI S, et al, Explosion of gasoline/air mixture in confined space with weakly constrained structure at the top[J]. Explosion and Shock Wave, 2017, 37(1):53-60.
|
[26] |
王世茂, 杜扬, 李国庆, 等. 局部开口受限空间油气爆燃的超压瞬变与火焰行为[J]. 化工学报, 2017, 68(8):3310-3318. WANG S M, DU Y, LI G Q, et al. Overpressure transients and flame behaviors of gasoline-air mixture deflagration in confined space with local opening[J]. CIESC Journal, 2017, 68(8):3310-3318.
|
[27] |
李阳超, 杜扬, 王世茂, 等. 端部开口受限空间汽油蒸气爆燃超压特性研究[J]. 中国安全生产科学技术, 2016, 12(7):32-36. LI Y C, DU Y, WANG S M, et al. Study on characteristics of deflagration overpressure for gasoline vapor in confined space with end opening[J]. Journal of Safety Science and Technology, 2016, 12(7):32-36.
|
[28] |
吴松林, 杜扬, 欧益宏, 等. 圆柱形管道旁侧油气泄爆实验研究[J]. 爆炸与冲击, 2016, 36(5):680-687. WU S L, DU Y, OU Y H, et al, Experimental study for lateral gasoline-air venting explosion in cylindrical pipeline[J]. Explosion and Shock Wave, 2016, 36(5):680-687.
|
[29] |
GUO J, LI Q, CHEN D D, et al. Effect of burst pressure on vented hydrogen-air explosion in a cylindrical vessel[J]. International Journal of Hydrogen Energy, 2015, 40(19):6478-6486.
|
[30] |
YAN X Q, YU J L, GAO W. Flame behaviors and pressure characteristics of vented dust explosions at elevated static activation overpressures[J]. Journal of Loss Prevention in the Process Industries, 2015, 33:101-108.
|