[1] |
ELVIRA K S, CASADEVALL S X, WOOTTON R C, et al. The past, present and potential for microfluidic reactor technology in chemical synthesis[J]. Nature Chemistry, 2013, 5(11):905-915.
|
[2] |
PEELA N R, LEE I C, VLACHOS D G. Design and fabrication of a high-throughput microreactor and its evaluation for highly exothermic reactions[J]. Industrial & Engineering Chemistry Research, 2012, 51(50):16270-16277.
|
[3] |
HAEBERLE S, ZENGERLE R. Microfluidic platforms for lab-on-a-chip applications[J]. Lab on a Chip, 2007, 7(9):1094-1110.
|
[4] |
KOCKMANN N, GOTTSPONER M, ROBERGE D M. Scale-up concept of single-channel microreactors from process development to industrial production[J]. Chemical Engineering Journal, 2011, 167(2):718-726.
|
[5] |
HOLTZE C. Large-scale droplet production in microfluidic devices-an industrial perspective[J]. Journal of Physics D:Applied Physics, 2013, 46(11):114008.
|
[6] |
LAPORTE M, MONTILLET A, DELLA V D, et al. Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput[J]. Journal of Food Engineering, 2016, 173:25-33.
|
[7] |
RODRÍGUEZ R J, SEVILLA A, MARTÍNEZ B C, et al. Generation of microbubbles with applications to industry and medicine[J]. Annual Review of Fluid Mechanics, 2015, 47(1):405-429.
|
[8] |
LINDNER J R. Microbubbles in medical imaging current applications and future directions[J]. Nature Review, 2004, 3(6):527-532.
|
[9] |
SAIF A K, AXEL G, MARTIN A S, et al. Microfluidic synthesis of colloidal silica[J]. Langmuir, 2004, 20:8604-8611.
|
[10] |
GARSTECKI P, FUERSTMAN M J, STONE H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3):437-446.
|
[11] |
THORSEN T, ROBERTS R W, ARNOLD F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18):4163-4166.
|
[12] |
FU T T, MA Y G, FUNFSCHILLING D, et al. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction[J]. Chemical Engineering Science, 2010, 65(12):3739-3748.
|
[13] |
CHRISTOPHER G F, NOHARUDDIN N N, TAYLOR J A, et al. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions[J]. Physical Review E, 2008, 78(3):036317.
|
[14] |
LU Y T, FU T T, ZHU C Y, et al. Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device[J]. Microfluidics and Nanofluidics, 2013, 16(6):1047-1055.
|
[15] |
BURTON J C, WALDREP R, TABOREK P. Scaling and instabilities in bubble pinch-off[J]. Physical Review Letters, 2005, 94(18):184502.
|
[16] |
THORODDSEN S T, ETOH T G, TAKEHARA K. Experiments on bubble pinch-off[J]. Physics of Fluids, 2007, 19(4):042101.
|
[17] |
DOLLET B, VAN H W, RAVEN J P, et al. Role of the channel geometry on the bubble pinch-off in flow-focusing devices[J]. Physical Review Letters, 2008, 100(3):034504.
|
[18] |
CASTRO H E, VAN H W, LOHSE D, et al. Microbubble generation in a co-flow device operated in a new regime[J]. Lab on a Chip, 2011, 11(12):2023-2029.
|
[19] |
ZHANG J M, LI E Q, THORODDSEN S T. A co-flow-focusing monodisperse microbubble generator[J]. Journal of Micromechanics and Microengineering, 2014, 24(3):035008.
|
[20] |
LU Y T, FU T T, ZHU C Y, et al. Scaling of the bubble formation in a flow-focusing device:role of the liquid viscosity[J]. Chemical Engineering Science, 2014, 105:213-219.
|
[21] |
BOLAÑOS J R, SEVILLA A, MARTÍNEZ B C, et al. The effect of liquid viscosity on bubble pinch-off[J]. Physics of Fluids, 2009, 21(7):072103.
|
[22] |
FU T T, FUNFSCHILLING D, MA Y G, et al. Scaling the formation of slug bubbles in microfluidic flow-focusing devices[J]. Microfluidics and Nanofluidics, 2009, 8(4):467-475.
|
[23] |
GARSTECKI P, GITLIN I, DILUZIO W, et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device[J]. Applied Physics Letters, 2004, 85(13):2649-2651.
|
[24] |
GARSTECKI P, FUERSTMAN M J, STONE H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3):437-446.
|
[25] |
FU T T, MA Y G, FUNFSCHILLING D, et al. Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J]. Chemical Engineering Science, 2009, 64(10):2392-2400.
|
[26] |
DAVIDSON J F, SCHÜLER B. Bubble formation at an orifice in a viscous liquid[J]. Chemical Engineering Research & Design, 1997, 75(12):S105-S115.
|
[27] |
ZHANG C, FU T T, ZHU C Y, et al. Dynamics of bubble formation in highly viscous liquids in a flow-focusing device[J]. Chemical Engineering Science, 2017, 172:278-285.
|
[28] |
DOSHI P, COHEN I, ZHANG W W, et al. Persistence of memory in drop breakup:the breakdown of universality[J]. Science, 2003, 302(5648):1185-1188.
|
[29] |
BOLAÑOS J R, SEVILLA A, MARTÍNEZ B C. The necking time of gas bubbles in liquids of arbitrary viscosity[J]. Physics of Fluids, 2016, 28(4):042105.
|
[30] |
PLESSET M S. Bubble dynamics and cavitation[J]. Annual Review of Fluid Mechanics, 1977, 9(1):145-185.
|