CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 172-178.DOI: 10.11949/0438-1157.20221554
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Lisen BI(), Bin LIU(
), Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU
Received:
2022-11-30
Revised:
2022-12-05
Online:
2023-09-27
Published:
2023-06-05
Contact:
Bin LIU
毕丽森(), 刘斌(
), 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭
通讯作者:
刘斌
作者简介:
毕丽森(1999—),男,硕士研究生,epiphany10@163.com
基金资助:
CLC Number:
Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces[J]. CIESC Journal, 2023, 74(S1): 172-178.
毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178.
1 | Bigioni T P, Lin X M, Nguyen T T, et al. Kinetically driven self assembly of highly ordered nanoparticle monolayers[J]. Nature Materials, 2006, 5(4): 265-270. |
2 | Xia D Y, Brueck S R J. A facile approach to directed assembly of patterns of nanoparticles using interference lithography and spin coating[J]. Nano Letters, 2004, 4(7): 1295-1299. |
3 | Jing J, Reed J, Huang J, et al. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(14): 8046-8051. |
4 | Chen R H, Phuoc T X, Martello D. Surface tension of evaporating nanofluid droplets[J]. International Journal of Heat and Mass Transfer, 2011, 54(11): 2459-2466. |
5 | Jung Y C, Bhushan B. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces[J]. Journal of Microscopy, 2010, 229(1):127-140. |
6 | Zang D Y, Tarafdar S, Yu Y, et al. Evaporation of a droplet: from physics to applications[J]. Physics Reports, 2019, 804: 1-56. |
7 | Moffat J R, Sefiane K, Shanahan M E R. Effect of TiO2 nanoparticles on contact line stick-slip behavior of volatile drops[J]. The Journal of Physical Chemistry B, 2009, 113(26): 8860-8866. |
8 | Hu H, Larson R G. Analysis of the microfluid flow in an evaporating sessile droplet[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2005, 21(9): 3963-3971. |
9 | Peddie W. The scientific papers of James clerk maxwell[J]. Nature, 1927, 120(3031): 799-800. |
10 | Picknett R G, Bexon R. The evaporation of sessile or pendant drops in still air[J]. Journal of Colloid and Interface Science, 1977, 61(2): 336-350. |
11 | Chen X M, Ma R Y, Li J T, et al. Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects[J]. Physical Review Letters, 2012, 109(11): 116101. |
12 | 高明, 孔鹏, 章立新. 恒热流条件下亲疏水表面液滴蒸发特性[J]. 化工学报, 2018, 69(7): 2979-2984. |
Gao M, Kong P, Zhang L X. Character of sessile droplets evaporation on hydrophilic and hydrophobic heating surface with constant heat fluxes[J]. CIESC Journal, 2018, 69(7): 2979-2984. | |
13 | 黄承志, 汤海波, 顾恬, 等. 热敏荧光法用于蒸发液滴近接触线的温度测量[J]. 化工学报, 2021, 72(10): 5142-5149. |
Huang C Z, Tang H B, Gu T, et al. Characterizing the temperature profile near contact lines of an evaporating sessile drop[J]. CIESC Journal, 2021, 72(10): 5142-5149. | |
14 | 闫鑫, 徐进良. 超疏水表面太阳能加热金-水纳米流体液滴蒸发特性[J]. 化工学报, 2019, 70(3): 892-900. |
Yan X, Xu J L. Character of sessile gold-water nanofluid droplet evaporation with solar heating on superhydrophobic surface[J]. CIESC Journal, 2019, 70(3): 892-900. | |
15 | Birdi K S, Vu D T. Wettability and the evaporation rates of fluids from solid surfaces[J]. Journal of Adhesion Science and Technology, 1993, 7(6): 485-493. |
16 | Blake T D, de Coninck J. The influence of solid-liquid interactions on dynamic wetting[J]. Advances in Colloid and Interface Science, 2002, 96(1/2/3): 21-36. |
17 | Putnam S A. Microdroplet evaporation on superheated surfaces[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 5793-5807. |
18 | Dash S, Garimella S V. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2013, 29(34): 10785-10795. |
19 | 刘斌, 单亮亮, 邸倩倩, 等. 底板属性对液滴蒸发过程的影响[J]. 工程热物理学报, 2017, 38(9): 1940-1943. |
Liu B, Shan L L, Di Q Q, et al. Effect of substrate properties on droplet evaporation process[J]. Journal of Engineering Thermophysics, 2017, 38(9): 1940-1943. | |
20 | Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
21 | Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
22 | 王宇, 潘振海. 水平及竖直基底上微小固着液滴的蒸发特性分析[J]. 化工进展, 2021, 40(7): 3632-3644. |
Wang Y, Pan Z H. Analysis of evaporation characteristics of small water droplets sessile on horizontal and vertical substrates[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3632-3644. | |
23 | 郭亚丽. 纳米流体固着液滴蒸发等流动与传热问题的LBM分析[D]. 大连: 大连理工大学, 2009. |
Guo Y L. Study of flow and heat transfer in the process such as evaporation of nanofluid sessile droplet with LBM[D]. Dalian: Dalian University of Technology, 2009. | |
24 | Theodorakis P E, Wang Y J, Chen A Q, et al. Off-lattice Monte-Carlo approach for studying nucleation and evaporation phenomena at the molecular scale[J]. Materials (Basel, Switzerland), 2021, 14(9): 2092. |
25 | Wang F C, Wu H A. Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces[J]. Soft Matter, 2013, 9(24): 5703. |
26 | 唐瑞, 吴春梅, 李友荣. 附壁氩液滴蒸发过程的分子动力学模拟[J]. 工程热物理学报, 2018, 39(6): 1175-1180. |
Tang R, Wu C M, Li Y R. Molecular dynamics simulation of the evaporation process of a sessile argon droplet[J]. Journal of Engineering Thermophysics, 2018, 39(6): 1175-1180. | |
27 | 高山. 纳米结构表面的液滴传输特性及相变过程研究[D]. 武汉: 华中科技大学, 2020. |
Gao S. Study of the droplet transport characteristics and phase transition processes on nanostructured surfaces[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
28 | 章佳健. 纳米尺度下液滴蒸发的分子动力学研究[D]. 合肥: 中国科学技术大学, 2020. |
Zhang J J. Molecular dynamics study of nanodroplets evaporation[D]. Hefei: University of Science and Technology of China, 2020. | |
29 | Daubert T E. Physical and Thermodynamic Properties of Pure Compounds: Data Compilation[M]. New York: Hemisphere publishing corp, 1989. |
30 | Milne E A. The collected works of J. Willard Gibbs[J]. The Mathematical Gazette, 1948, 32(302): 303-304. |
31 | Shanahan M E R. Simple theory of “stick-slip” wetting hysteresis[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 1995, 11(3): 1041-1043. |
[1] | Hongbiao XU, Liang YANG, Zidong LI, Daoping LIU. Kinetics of methane hydrate formation in saline droplets/copper foam composite system [J]. CIESC Journal, 2024, 75(9): 3287-3296. |
[2] | Dan PENG, Junjie LU, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress of functional electrolyte for high-voltage LiCoO2 battery [J]. CIESC Journal, 2024, 75(9): 3028-3040. |
[3] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[4] | Lei ZUO, Junfeng WANG, Jian GAO, Daorui WANG. Electric field-regulating combustion behavior of biodiesel droplet [J]. CIESC Journal, 2024, 75(8): 2983-2990. |
[5] | Bin HUANG, Shengjie FENG, Cheng FU, Wei ZHANG. Numerical study on spreading characteristics of droplet impact on single fiber [J]. CIESC Journal, 2024, 75(6): 2233-2242. |
[6] | Zongwei HUO, Yabin NIU, Yanqiu PAN. Behavior of high viscosity oil droplets in oil-water membrane separation and its influencing factors [J]. CIESC Journal, 2024, 75(6): 2262-2273. |
[7] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[8] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
[9] | Xinrui ZHANG, Xuemei CHEN. CNT/PVA@carbon-cloth membrane for performance study of solar and electric-driven interfacial evaporation [J]. CIESC Journal, 2024, 75(3): 1028-1039. |
[10] | Bangjun GUO, Linan JIA, Xi ZHANG. A review of NCM cathode and interface characteristics in all-solid-state lithium-ion battery with sulfide electrolytes [J]. CIESC Journal, 2024, 75(3): 743-759. |
[11] | Shirong SONG, Hongchen LIU, Xiaotian MI, Chao XU, Mei YANG, Chaoqun YAO. Experimental investigation of droplet formation in coaxial microchannels with different geometries of inner channel [J]. CIESC Journal, 2024, 75(2): 566-574. |
[12] | Na XU, Zixuan LI, Zilu LIU, Yaodong LYU, Shiwen ZHANG. Influence of solution environment on the dispersion stability of nanoparticle liquid system [J]. CIESC Journal, 2024, 75(10): 3815-3824. |
[13] | Yudan WANG, Chen XU, Da RUAN, Jiang CHUN, Xuehu MA. Heat transfer characteristics of capillary pumping-replenishment evaporation on nanowire clusters surfaces with V-grooves [J]. CIESC Journal, 2024, 75(10): 3424-3436. |
[14] | Zhiyi YU, Junyan FANG, Wenyao CHEN, Gang QIAN, Xuezhi DUAN. Regulation of Pt-Bi interfaces for selective catalytic oxidation of glycerol [J]. CIESC Journal, 2024, 75(10): 3568-3578. |
[15] | Hailin JIA, Jinxiang ZENG, Rongkun PAN, Shili PAN, Kaixuan ZHOU. True fire experimental and molecular dynamic simulation of fluorine-free foam extinguishing agent [J]. CIESC Journal, 2024, 75(10): 3825-3834. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 974
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 258
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||