[1] |
侯妍冰, 田秀山, 赵辉, 等. 黏弹性对液体初次雾化特性的影响[J]. 化工学报, 2013, 64(5):1601-1606. HOU Y B, TIAN X S, ZHAO H, et al. Influence of viscoelasticity on liquid primary atomization[J]. CIESC Journal, 2013, 64(5):1601-1606.
|
[2] |
陈小艳, 周骛, 蔡小舒, 等. 大型喷雾粒径分布的图像法测量[J]. 化工学报, 2014, 65(2):480-487. CHEN X Y, ZHOU W, CAI X S, et al. Particle size distribution measurement of large spray by imaging[J]. CIESC Journal, 2014, 65(2):480-487.
|
[3] |
王亚青. 喷雾冷却无沸腾区换热特性研究[D]. 合肥:中国科学技术大学, 2010. WANG Y Q. Studying the heat transfer performance in the non-boiling regime of spray cooling[D]. Hefei:University of Science and Technology of China, 2010.
|
[4] |
张伟, 王照亮, 徐明海. 微结构表面封闭式喷雾冷却传热特性[J]. 强激光与粒子束, 2012, 24(9):2053-2058. ZHANG W, WANG Z L, XU M H. Heat transfer characteristics of spray cooling on micro-structured surface in enclosed room[J]. High Power Laser and Particle Beams, 2012, 24(9):2053-2058.
|
[5] |
张伟. 微槽表面喷雾冷却换热特性研究[D]. 青岛:中国石油大学(华东), 2013. ZHANG W. Investigation of heat transfer characteristics of spray cooling on micro-grooved surfaces[D]. Qingdao:China University of Petroleum, 2013.
|
[6] |
LABERGUE A, GRADECK M, LEMOINE F. Comparative study of the cooling of a hot temperature surface using sprays and liquid jets[J]. International Journal of Heat and Mass Transfer, 2015, 81:889-900.
|
[7] |
王军. 阵列喷雾冷却换热特性及表面温度均匀性实验研究[D]. 南京:南京理工大学, 2016. WANG J. Experimental research on heat transfer performance and surface temperature uniformity in array spray cooling[D]. Nanjing:Nanjing University of Science & Technology, 2016.
|
[8] |
HALVORSON P J. On the heat transfer characteristics of spray cooling[D]. Atlanta:Georgia Institute of Technology, 1993.
|
[9] |
SILK E A. Investigation of enhanced surface spray cooling[D]. College Park:University of Maryland, College Park, 2006.
|
[10] |
张伟, 李斌, 王照亮. 表面结构对喷雾冷却临界热通量的影响[J]. 流体机械, 2015, 43(6):34-38. ZHANG W, LI B, WANG Z L. Effects of surface structures on critical heat flux in spray cooling[J]. Fluid Machinery, 2015, 43(6):34-38.
|
[11] |
CHEN X Q, CHOW L, SEHMBEY M. Thickness of film produced by pressure atomizing nozzles[C]//30th Thermophysics Conference. 1995:2103.
|
[12] |
Fabbri M, Jiang S, Dhir V K. Comparative study of spray and multiple micro jets cooling for high power density electronic applications[C]//ASME 2003 International Mechanical Engineering Congress and Exposition. 2003:657-665.
|
[13] |
王亚青, 刘明侯, 刘东, 等. 喷雾冷却换热机理和影响换热性能的因素[J]. 强激光与粒子束, 2011, 23(9):2277-2281. WANG Y Q, LIU M H, LIU D, et al. Spray cooling heat transfer mechanism and influence factors of heat transfer performance[J]. High Power Laser and Particle Beams, 2011, 23(9):2277-2281.
|
[14] |
张震. 微纳米表面喷雾冷却的机理研究[D]. 北京:清华大学, 2013. ZHANG Z. Two phase spray cooling heat transfer mechanisms on smooth and micro-, nano-, hybrid-structured surfaces[D]. Beijing:Tsinghua University, 2013.
|
[15] |
Wang Y, Liu M, Liu D, et al. Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime[J]. Experimental Thermal and Fluid Science, 2010, 34(7):933-942.
|
[16] |
刘妮, 李丽荣, 钟泽民. 微结构表面喷雾冷却性能试验研究[J]. 机械工程学报, 2017, 53(6):158-165. LIU N, LI L R, ZHONG Z M. Heat transfer characteristics of spray cooling on micro-structured surface[J]. Journal of Mechanical Engineering, 2017, 53(6):158-165.
|
[17] |
Xie J L, Zhao R, Duan F, et al. Thin liquid film flow and heat transfer under spray impingement[J]. Applied Thermal Engineering, 2012, 48:342-348.
|
[18] |
穆文乐. 内混式空气助力喷嘴喷雾特性的试验及数值模拟研究[D]. 西安:长安大学, 2014. MU W L. Experiment research and numerical simulation on spray characteristics of an internal mixing air-blast-atomizer[D]. Xi'an:Chang'an University, 2014.
|
[19] |
赵锐. 喷雾冷却传热机理及空间换热地面模拟研究[D]. 合肥:中国科学技术大学, 2009. ZHAO R. Study on heat transfer mechanism in spray cooling and terrestrial simulation of heat transfer in space[D]. Hefei:University of Science and Technology of China, 2009.
|
[20] |
Bai C, Gosman A D. Development of methodology for spray impingement simulation[R]. SAE Technical Paper, 1995.
|
[21] |
Healy W M, Halvorson P J, Hartley J G, et al. A critical heat flux correlation for droplet impact cooling at low Weber numbers and various ambient pressures[J]. International Journal of Heat and Mass Transfer, 1998, 41(6/7):975-978.
|
[22] |
Sawyer M L, Jeter S M, ABDEL-KHALIK S I. A critical heat flux correlation for droplet impact cooling[J]. International Journal of Heat and Mass Transfer, 1997, 40(9):2123-2131.
|
[23] |
王晓墨, 黄素逸, 龙妍. 波形板分离器中液滴二次携带碰壁模型[J]. 华中科技大学学报(自然科学版), 2003, 31(8):41-43. WANG X M, HUANG S Y, LONG Y. Impinging model of re-entrainment on steam-water separator with corrugated plates[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2003, 31(8):41-43.
|
[24] |
Karwa N, Kale S R, Subbarao P M V. Experimental study of non-boiling heat transfer from a horizontal surface by water sprays[J]. Experimental Thermal and Fluid Science, 2007, 32(2):571-579.
|
[25] |
Horacek B, Kiger K T, Kim J. Single nozzle spray cooling heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2005, 48(8):1425-1438.
|
[26] |
MartÃnez-GalvÃ?n E, Ramos J C, AntÃ?n R Ã, et al. Film thickness and heat transfer measurements in a spray cooling system with R134a[J]. Journal of Electronic Packaging, 2011, 133(1):011002.
|
[27] |
Abbasi B, Kim J, Marshall A. Dynamic pressure based prediction of spray cooling heat transfer coefficients[J]. International Journal of Multiphase Flow, 2010, 36(6):491-502.
|
[28] |
王锐, 周致富, 白飞龙, 等. R404a喷雾冷却表面传热特性的时空不均匀性[J]. 化工学报, 2015, 66(4):1258-1264. WANG R, ZHOU Z F, BAI F L. Temporal and radial dependent profiles for surface heat transfer during R404a spray cooling[J]. CIESC Journal, 2015, 66(4):1258-1264.
|
[29] |
Pautsch A G, Shedd T A. Adiabatic and diabatic measurements of the liquid film thickness during spray cooling with FC-72[J]. International Journal of Heat and Mass Transfer, 2006, 49(15):2610-2618.
|
[30] |
王亚青, 刘明侯, 刘东, 等. 大功率激光器喷雾冷却中无沸腾区换热性能实验研究[J]. 中国激光, 2009, 36(8):1973-1978. WANG Y Q, LIU M H, LIU D, et al. Experiment study on non-boiling heat transfer performance in spray cooling for high-power laser[J]. Chinese Journal of Lasers, 2009, 36(8):1973-1978.
|