[1] |
ANTOS G J, AITANI A M. Catalytic Naphtha Reforming, Revised and Expanded[M]. Florida:CRC Press, 2004:2-3.
|
[2] |
王松汉. 乙烯装置技术与运行[M]. 北京:中国石化出版社, 2009:41-43. WANG S H. Technology and Operation of Ethylene Plants[M]. Beijing:Sinopec Press, 2009:41-43.
|
[3] |
蔡智, 黄维秋, 李伟民, 等. 油品调合技术[M]. 北京:中国石化出版社, 2006:57-58. CAI Z, HUANG W Q, LI W M, et al. Petroleum Blending Technology[M]. Beijing:Sinopec Press, 2006:57-58.
|
[4] |
RIAZI M. Characterization and Properties of Petroleum Fractions[M]. Philadelphia:ASTM International, 2005:10-12.
|
[5] |
VAN GEEM K M, HUDERBINE D, REYNIERS F, et al. Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices[J]. Computer & Chemical Engineering, 2007, 31:1020-1034.
|
[6] |
QUANN R J, JAFFE S B. Structural-oriented lumping:describing the chemistry of complex mixtures[J]. Industrial & Engineering Chemistry Research, 1992, 31:2483-2497.
|
[7] |
GHOSH P, HICKEY K J, JAFFE S B. Development of a detailed gasoline composition-based octane model[J]. Industrial & Engineering Chemistry Research, 2006, 45(1):337-345.
|
[8] |
GHOSH P. Predicting the effect of cetane improvers on diesel fuels[J]. Energy & Fuel, 2008, 22(2):1073-1079.
|
[9] |
邱彤, 陈金财, 方舟. 基于结构导向集总的石油馏分分子重构模型[J]. 清华大学学报(自然科学版), 2016, 56(4):424-429. QIU T, CHEN J C, FANG Z. Molecular reconstruction model for petroleum fractions based on structure oriented lumping[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(4):424-429.
|
[10] |
PENG B. Molecular modelling of refinery processes[D]. Manchester:University of Manchester Institute of Science and Technology, 1999.
|
[11] |
ZHANG Y. A molecular approach for characterization and property predictions of petroleum mixtures with applications to refinery modelling[D]. Manchester:University of Manchester, 1999.
|
[12] |
AYE M, ZHANG N. A novel methodology in transforming bulk properties of refining streams into molecular information[J]. Chemical Engineering Science, 2005, 60:6702-17.
|
[13] |
GOMEZ-PRADO J, ZHANG N, THEODOROPOULOS C. Characterization of heavy petroleum fractions using modified molecular-type homologous series (MTHS) representation[J]. Energy, 2008, 33:974-987.
|
[14] |
WU Y. Molecular management for refining operations[D]. Manchester:University of Manchester, 2010.
|
[15] |
LIU L. Molecular characterization and modelling for refining processes[D]. Manchester:University of Manchester, 2015.
|
[16] |
梅华, 杜玉鹏, 王振雷, 等. 基于分子同系物向量表示的石脑油特征提取方法[J]. 清华大学学报(自然科学版), 2016, 56(7):723-727. MEI H, DU Y P, WANG Z L, et al. Naphtha characterization based on a molecular-type homologous vector representation[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(7):723-727.
|
[17] |
MEI H, CHENG H, WANG Z, et al. Molecular characterization of petroleum fractions using state space representation and its application for predicting naphtha pyrolysis product distributions[J]. Chemical Engineering Science, 2017, 164:81-89.
|
[18] |
ECKERT E, VANEK T. New approach to the characterisation of petroleum mixtures used in the modelling of separation processes[J]. Computers & Chemical Engineering, 2005, 30:343-356.
|
[19] |
HONG K S. Lumped-component characterization of crude oils for compositional simulation[C]//SPE Enhanced Oil Recovery Symposium. USA:Society of Petroleum Enigeers, 1982:4-7.
|
[20] |
LEE S, JACOBY R H, CHEN W H, et al. Experimental and theoretical studies on the fluid properties required for simulation of thermal processes[J]. Society of Petroleum Engineers Journal, 1981, 21(5):535-550.
|
[21] |
WHITSON C H. Characterizing hydrocarbon-plus fractions[J]. Society of Petroleum Engineers Journal, 1983, 23(4):683-694.
|
[22] |
RANZI E, DENTE M, GOLDANIGA A, et al. Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures[J]. Progress in Energy and Combustion Science, 2001, 27(1):99-139.
|
[23] |
RANZI E, PIERUCCI S, DENTE M, et al. Correct molecular reconstruction of cracking feeds:a need for the accurate prediction of ethylene yields[J]. Chemical Engineering Transaction, 2015, 43:871-876.
|
[24] |
WU Y, ZHANG N. Molecular management of gasoline streams[J]. Chemical Engineering Transaction, 2009, 18:749-754.
|
[25] |
VAVASIS S A. On the complexity of nonnegative matrix factorization[J]. SIAM Journal on Optimization, 2009, 20(3):1364-1377.
|
[26] |
LEE D D, SEUNG S H. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791.
|
[27] |
LEE D D, SEUNG S H. Algorithms for nonnegative matrix factorization[C]//Advances in Neural Information Processing Systems 13:Proceedings of the 2000 Conference. London:MIT Press, 2000:556-562.
|
[28] |
KUMAR A, SINDHWANI V, KAMBADUR P. Fast conical hull algorithms for near separable non-negative matrix factorization[C]//Proceedings of the 30th International Conference on Machine Learning. USA:ACM, 2013, 28:231-239.
|
[29] |
BITTORF V, RECHT B, RE C, et al. Factoring nonnegative matrices with linear programs[J]. Advances in Neural Information Processing Systems, 2012, 2:1214-1222.
|
[30] |
TEPPER M, SAPIRO G. Compressed nonnegative matrix factorization is fast and accurate[J]. IEEE Trans. Signal Process, 2016, 64(9):2269-2283.
|
[31] |
WANG D, NIE F, HUANG H. Fast robust non-negative matrix factorization for large-scale human action data clustering[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-16). USA:ACM, 2016:2104-2110.
|