CIESC Journal ›› 2018, Vol. 69 ›› Issue (7): 2890-2898.DOI: 10.11949/j.issn.0438-1157.20171547
Previous Articles Next Articles
HUANG Ruilian, ZHAO Changying, XU Zhiguo
Received:
2017-11-19
Revised:
2017-12-25
Online:
2018-07-05
Published:
2018-07-05
Supported by:
supported by the National Natural Science Foundation of China (51576126) and the Natural Science Foundation of Shanghai (15ZR1423400).
黄瑞连, 赵长颖, 徐治国
通讯作者:
赵长颖
基金资助:
国家自然科学基金项目(51576126);上海市自然科学基金项目(15ZR1423400)。
CLC Number:
HUANG Ruilian, ZHAO Changying, XU Zhiguo. Bubble departure in gradient metal foam under pool boiling conditions[J]. CIESC Journal, 2018, 69(7): 2890-2898.
黄瑞连, 赵长颖, 徐治国. 梯度金属泡沫池沸腾过程中气泡脱离特性[J]. 化工学报, 2018, 69(7): 2890-2898.
[1] | SARAFRAZ M M, HORMOZI F. Pool boiling heat transfer to dilute copper oxide aqueous nanofluids[J]. International Journal of Thermal Sciences, 2015, 90:224-237. |
[2] | LITER, S G, KAVIANY M. Pool-boiling CHF enhancement by modulated porous-layer coating:theory and experiment[J]. International Journal of Heat and Mass Transfer, 2001, 44(22):4287-4311. |
[3] | MA X, CHENG P, GONG S, et al. Mesoscale simulations of saturated pool boiling heat transfer under microgravity conditions[J]. International Journal of Heat & Mass Transfer, 2017, 114:453-457. |
[4] | SAEIDI D, ALEMRAJABI A A, SAEIDI N. Experimental study of pool boiling characteristic of an aluminized copper surface[J]. International Journal of Heat & Mass Transfer, 2015, 85:239-246. |
[5] | FRITZ W. Berechnung des maximal volume von dampfblasen[J]. Phys. Z., 1935, 36:379-388. |
[6] | KOCAMUSTAFAOGULLARI G. Pressure dependence of bubble departure diameter for water[J]. International Communications in Heat and Mass Transfer, 1983, 10(6):501-509. |
[7] | HSU Y Y. On the size range of active nucleation cavities on a heating surface[J]. Journal of Heat Transfer, 1962, 84(3):207-213. |
[8] | CORTY C, FOUST A S. Surface variables in nucleate boiling[C]//Chemical Engineering Progress Symposium Series.1955. |
[9] | TONG W, BAR-COHEN A, SIMON T W, et al. Contact angle effects on boiling incipience of highly-wetting liquids[J]. International Journal of Heat and Mass Transfer, 1990, 33(1):91-103. |
[10] | CORNWELL K. On boiling incipience due to contact angle hysteresis[J]. International Journal of Heat and Mass Transfer, 1982, 25(2):205-211. |
[11] | MADADNIA J, KOOSHA H. Electrohydrodynamic effects on characteristic of isolated bubbles in the nucleate pool boiling regime[J]. Experimental Thermal and Fluid Science, 2003, 27(2):145-150. |
[12] | MCHALE J P, GARIMELLA S V. Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces[J]. International Journal of Multiphase Flow, 2010, 36(4):249-260. |
[13] | PAZ C, CONDE M, PORTEIRO J, et al. Effect of heating surface morphology on the size of bubbles during the subcooled flow boiling of water at low pressure[J]. International Journal of Heat and Mass Transfer, 2015, 89:770-782. |
[14] | IBRAHIM E A, JUDD R L. An experimental investigation of the effect of subcooling on bubble growth and waiting time in nucleate boiling[J]. Journal of Heat Transfer, 1985, 107(1):168-174. |
[15] | GOEL P, NAYAK A K, KULKARNI P P, et al. Experimental study on bubble departure characteristics in subcooled nucleate pool boiling[J]. International Journal of Multiphase Flow, 2017, 89:163-176. |
[16] | RAGHUPATHI P A, KANDLIKAR S G. Bubble growth and departure trajectory under asymmetric temperature conditions[J]. International Journal of Heat & Mass Transfer, 2016, 95:824-832. |
[17] | GAO M, CHENG P, QUAN X. An experimental investigation on effects of an electric field on bubble growth on a small heater in pool boiling[J]. International Journal of Heat and Mass Transfer, 2013, 67:984-991. |
[18] | HAMZEKHANI S, FALAHIEH M M, AKBARI A. Bubble departure diameter in nucleate pool boiling at saturation:pure liquids and binary mixtures[J]. International Journal of Refrigeration, 2014, 46:50-58. |
[19] | KANDLIKAR S G. Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer[J]. Applied Physics Letters, 2013, 102(5):051611. |
[20] | ALAM T, KHAN A S, LI W, et al. Transient force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 101:937-947. |
[21] | THOME J R, CIONCOLINI A. Unified modeling suite for two-phase flow, convective boiling, and condensation in macro-and microchannels[J]. Heat Transfer Engineering, 2016, 37(13/14):1148-1157. |
[22] | YIN L, JIA L. Confined characteristics of bubble during boiling in microchannel[J]. Experimental Thermal and Fluid Science, 2016, 74:247-256. |
[23] | WANG Y, SEFIANE K. Single bubble geometry evolution in microscale space[J]. International Journal of Thermal Sciences, 2013, 67:31-40. |
[24] | XU J, JI X, ZHANG W, et al. Pool boiling heat transfer of ultra-light copper foam with open cells[J]. International Journal of Multiphase Flow, 2008, 34(11):1008-1022. |
[25] | YANG Y, JI X, XU J. Pool boiling heat transfer on copper foam covers with water as working fluid[J]. International Journal of Thermal Sciences, 2010, 49(7):1227-1237. |
[26] | XU Z G, QU Z G, ZHAO C Y, et al. Experimental correlation for pool boiling heat transfer on metallic foam surface and bubble cluster growth behavior on grooved array foam surface[J]. International Journal of Heat and Mass Transfer, 2014, 77:1169-1182. |
[27] | XU Z G, ZHAO C Y. Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions[J]. Applied Thermal Engineering, 2016, 100:68-77. |
[28] | KESHOCK E G, SIEGEL R. Force acting on bubbles in nucleate boiling under normal and reduced gravity conditions[R].National Aeronautics and Space Administration. Cleveland, 1964. |
[29] | THORNCROFT G E, KLAUSNER J F. Bubble forces and detachment models[J]. Multiphase Science and Technology, 2001, 13(3/4):35-76. |
[30] | KANDLIKAR S G. Scale effects on flow boiling heat transfer in microchannels:a fundamental perspective[J]. International Journal of Thermal Sciences, 2010, 49(7):1073-1085. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[4] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[5] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[6] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[7] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[8] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[9] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[12] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[13] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[14] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[15] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 794
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 440
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||