[1] |
TANG Z, KOTOV N A, MAGONOV S, et al. Nanostructured artificial nacre[J]. Nat. Mater., 2003, 2(6):413-418.
|
[2] |
RAO M D. Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes[J]. J. Sound. Vib., 2003, 262(3):457-474.
|
[3] |
LAKES R S. Viscoelastic Materials[M]. New York:Cambridge University Press, 2009:207-257.
|
[4] |
PUEBLO C E, SUN M, KELTON K F. Strength of the repulsive part of the interatomic potential determines fragility in metallic liquids[J]. Nat. Mater., 2017, 16(8):792-796.
|
[5] |
SEN S, KUMMAR S K, KEBLINSKI P. Viscoelastic properties of polymer melts from equilibrium molecular dynamics simulations[J]. Macromolecules, 2005, 38(3):650-653.
|
[6] |
LEE S H. Equilibrium molecular dynamics simulation study for transport properties of noble gases:the Green-Kubo formula[J]. Bull. Korean Chem. Soc., 2013, 34(10):2931-2936.
|
[7] |
VIPIN A, KRISTIN H, WIROJ N, et al. Prediction of viscoelastic properties with coarse-grained molecular dynamics and experimental validation for a benchmark polyurea system[J]. J. Polym. Sci., Part B:Polym. Phys., 2016, 54(8):797-810.
|
[8] |
HATTEMER G D, ARYA G. Viscoelastic properties of polymer-grafted nanoparticle composites from molecular dynamics simulations[J]. Macromolecules, 2015, 48(4):1240-1255.
|
[9] |
YU H B, RICHERT R, SAMWER K. Correlation between viscoelastic moduli and atomic rearrangements in metallic glasses[J]. J. Phys. Chem. Lett., 2016, 7(19):3747-3751.
|
[10] |
MEIER K, LAESECKE A, KABELAC S. Transport coefficients of the Lennard-Jones model fluid(Ⅱ):Self-diffusion[J]. J. Chem. Phys., 2004, 121(19):9526-9535.
|
[11] |
VELDHORST A A, SCHRODER T B, DYRE J C. Pair potential that reproduces the shape of isochrones in molecular liquids[J]. J. Phys. Chem. B, 2016, 120(32):7970-7974.
|
[12] |
MEIER K, LAESECKE A, KABELAC S. Transport coefficients of the Lennard-Jones model fluid(Ⅰ):Viscosity[J]. J. Chem. Phys., 2004, 121(8):3671-3687.
|
[13] |
HEYES D M, DINI D, BRA?KA A C. Scaling of Lennard-Jones liquid elastic moduli, viscoelasticity and other properties along fluid-solid coexistence[J]. Phys. Status Solidi B, 2015, 252(7):1514-1525.
|
[14] |
HEYES D M, BRA?KA A C. The Lennard-Jones melting line and isomorphism[J]. J. Chem. Phys., 2015, 143(23):234504.
|
[15] |
GALLIE?O G, BONED C, BAYLAUCQ A. Molecular dynamics study of the Lennard-Jones fluid viscosity:application to real fluids[J]. Ind. Eng. Chem. Res., 2005, 44(17):6963-6972.
|
[16] |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117(1):1-19.
|
[17] |
范康年. 物理化学[M]. 2版. 北京:高等教育出版社, 2005:222. FAN K N. Physical Chemistry[M]. 2nd ed. Beijing:Higher Education Press, 2005:222.
|
[18] |
TAKAHASHI K, YASUOKA K, NARUMI T. Cutoff radius effect of isotropic periodic sum method for transport coefficients of Lennard-Jones liquid[J]. J. Chem. Phys., 2007, 127(11):044107.
|
[19] |
HOOVER W G. Canonical dynamics:equilibrium phase-space distributions[J]. Phys. Rev. A, 1985, 31(3):1695.
|
[20] |
LEE S H. Transport properties of Lennard-Jones mixtures:a molecular dynamics simulation study[J]. Bull. Korean Chem. Soc., 2008, 29(3):641-646.
|
[21] |
EVANS D J, HOLIAN B L. The Nose-Hoover thermostat[J]. J. Chem. Phys., 1985, 83(8):4079-4074.
|
[22] |
MORISHITA T. From Nosé-Hoover chain to Nosé-Hoover network:design of non-Hamiltonian equations of motion for molecular-dynamics with multiple thermostats[J]. Mol. Phys., 2010, 108(10):1337-1347.
|
[23] |
GREEN M S. Markoff random processes and the statistical mechanics of time-dependent phenomena[J]. J. Chem. Phys., 1954, 22(3):398-413.
|
[24] |
KUDO R, TODA M, HASHITSUME N. Statistical Physics Ⅱ[M]. 2nd ed. Heidelberg:Springer Press, 1985:40-108.
|
[25] |
BOON J P, YIP S. Molecular Hydrodynamics[M]. New York:Dover Publications, 1991:141-159.
|
[26] |
HATTKAMP R, DAIVIS P J, TODD B D. Density dependence of the stress relaxation function of a simple fluid[J]. Phys. Rev. E:Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2013, 87(3):032155.
|
[27] |
BARNES S C, LAWLESS B M, SHEPHERD D E T. Viscoelastic properties of human bladder tumours[J]. J. Mech. Behav. Biomed. Mater., 2016, 61(3):250-257.
|
[28] |
ABIDINE Y, LAURENT V M, MICHEL R. Local mechanical properties of bladder cancer cells measured by AFM as a signature of metastatic potential[J]. Eur. Phys. J. Plus, 2015, 130(10):202.
|
[29] |
YOUNGLOVE B A, HANLEY H J M. The viscosity and thermal conductivity coefficients of gaseous and liquid argon[J]. J. Phys. Chem. Ref. Data, 1986, 15(4):1323-1337.
|
[30] |
MORSALI A, GOHARSHADI E K, SHAHTAHMASBI N. Evaluation of high-frequency elastic moduli and shear relaxation time of the Lennard-Jones fluid using three known analytical expressions for radial distribution function[J]. Chem. Phys., 2006, 322(3):377-381.
|
[31] |
HATADA T, KOBORI T, ISHIDA M. Dynamic analysis of structures with Maxwell model[J]. Earthquake. Eng. Struct. Dyn., 2012, 29(2):159-176.
|