CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 3079-3092.DOI: 10.11949/0438-1157.20230381
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Received:2023-04-18
Revised:2023-06-23
Online:2023-08-31
Published:2023-07-05
Contact:
Yingwu LUO
通讯作者:
罗英武
作者简介:张澳(1999—),男,硕士研究生,aozhang@zju.edu.cn
基金资助:CLC Number:
Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives[J]. CIESC Journal, 2023, 74(7): 3079-3092.
张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092.
Add to citation manager EndNote|Ris|BibTeX
| Type | Stage | Mn,design① | Mn,exp | PDI | |
|---|---|---|---|---|---|
| SEHAS | 1 | 96.9 | 15 | 17.4 | 1.27 |
| 2 | 97.1 | 195 | 201.6 | 2.08 | |
| 3 | 95.5 | 210 | 217.1 | 2.10 | |
| SEHA | 1 | 96.8 | 5 | 6.3 | 1.64 |
| 2 | 97.6 | 125 | 124.0 | 2.74 |
Table 1 Molecular structure of the block copolymers
| Type | Stage | Mn,design① | Mn,exp | PDI | |
|---|---|---|---|---|---|
| SEHAS | 1 | 96.9 | 15 | 17.4 | 1.27 |
| 2 | 97.1 | 195 | 201.6 | 2.08 | |
| 3 | 95.5 | 210 | 217.1 | 2.10 | |
| SEHA | 1 | 96.8 | 5 | 6.3 | 1.64 |
| 2 | 97.6 | 125 | 124.0 | 2.74 |
Fig.17 Experimental (dot) and fitting results (solid line) with KWW equation of stress relaxation behavior of SEHAS/SEHA with different blending ratios under a strain 400%
| SEHAS/SEHA比例 | ||||
|---|---|---|---|---|
| 100∶0 | 0.033 | 0.095 | 3.21 | 0.35 |
| 75∶25 | 0.034 | 0.082 | 2.20 | 0.32 |
| 50∶50 | 0.045 | 0.061 | 2.45 | 0.34 |
| 25∶75 | 0.022 | 0.036 | 0.84 | 0.34 |
Table 2 Fitting parameters of SEHAS/SEHA with different blending ratios under a strain of 400%
| SEHAS/SEHA比例 | ||||
|---|---|---|---|---|
| 100∶0 | 0.033 | 0.095 | 3.21 | 0.35 |
| 75∶25 | 0.034 | 0.082 | 2.20 | 0.32 |
| 50∶50 | 0.045 | 0.061 | 2.45 | 0.34 |
| 25∶75 | 0.022 | 0.036 | 0.84 | 0.34 |
| 品牌/参数 | 膜厚/μm | 断裂 伸长率/% | 玻璃化 温度/°C | 剪切储能模量 (1 rad/s)/kPa | 损耗因子 (1 rad/s) | 应力 松弛率/% | 应变 回复率/% | 剥离强度/ (N/25 mm) |
|---|---|---|---|---|---|---|---|---|
| SEHAS∶SEHA=100∶0 | 25 | 1000 | -68 | 27 | 0.21 | 约20 | >95 | 8.1 |
| SEHAS∶SEHA=25∶75 | 25 | 700 | -68 | 15 | 0.30 | 约40 | >95 | 10.3 |
| 3M CEF3501 | 25 | 598 | -42 | 30 | 0.33 | — | — | 8.5 |
| AA改性[ | 100 | 约410 | -54 | 27 | — | 约48 | >95 | 约13.8① |
| 丙烯酸酯弹性体改性[ | 75 | — | -40 | — | — | 约50 | 约75 | 约12.0① |
| 交联密度调控[ | 50 | — | -31 | — | — | 约71 | 约71 | 约10.0① |
Table 3 The property and performance comparison of the foldable pressure sensitive adhesive between the current work and the literature
| 品牌/参数 | 膜厚/μm | 断裂 伸长率/% | 玻璃化 温度/°C | 剪切储能模量 (1 rad/s)/kPa | 损耗因子 (1 rad/s) | 应力 松弛率/% | 应变 回复率/% | 剥离强度/ (N/25 mm) |
|---|---|---|---|---|---|---|---|---|
| SEHAS∶SEHA=100∶0 | 25 | 1000 | -68 | 27 | 0.21 | 约20 | >95 | 8.1 |
| SEHAS∶SEHA=25∶75 | 25 | 700 | -68 | 15 | 0.30 | 约40 | >95 | 10.3 |
| 3M CEF3501 | 25 | 598 | -42 | 30 | 0.33 | — | — | 8.5 |
| AA改性[ | 100 | 约410 | -54 | 27 | — | 约48 | >95 | 约13.8① |
| 丙烯酸酯弹性体改性[ | 75 | — | -40 | — | — | 约50 | 约75 | 约12.0① |
| 交联密度调控[ | 50 | — | -31 | — | — | 约71 | 约71 | 约10.0① |
| 1 | Wang C, Hwang D, Yu Z B, et al. User-interactive electronic skin for instantaneous pressure visualization[J]. Nature Materials, 2013, 12(10): 899-904. |
| 2 | Park J, Heo S, Park K, et al. Research on flexible display at Ulsan National Institute of Science and Technology[J]. NPJ Flexible Electronics, 2017, 1: 9. |
| 3 | Rogers J A, Someya T, Huang Y G. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(5973): 1603-1607. |
| 4 | Lim D, Baek M J, Kim H S, et al. Carboxyethyl acrylate incorporated optically clear adhesives with outstanding adhesion strength and immediate strain recoverability for stretchable electronics[J]. Chemical Engineering Journal, 2022, 437: 135390. |
| 5 | Zhang P, Zhou W Y, He Y F, et al. Stretchable heterogeneous polymer networks of high adhesion and low hysteresis[J]. ACS Applied Materials & Interfaces, 2022, 14(43): 49264-49273. |
| 6 | Kim S, An J, Son S R, et al. Fabrication of highly elastic and optically transparent adhesive films for flexible displays using multifunctional photocrosslinker[J]. Molecular Crystals and Liquid Crystals, 2022, 740(1): 28-34. |
| 7 | Bartkowiak M, Czech Z, Mozelewska K, et al. Influence of thermal reactive crosslinking agents on the tack, peel adhesion, and shear strength of acrylic pressure-sensitive adhesives[J]. Polymer Testing, 2020, 90: 106603. |
| 8 | Baek S S, Jang S J, Hwang S H. The effect of crosslinker type on adhesion properties of transparent acrylic pressure sensitive adhesives for optical applications[J]. Elastomers and Composites, 2014, 49(3): 199-203. |
| 9 | Zhang X W, Ding Y T, Zhang G L, et al. Preparation and rheological studies on the solvent based acrylic pressure sensitive adhesives with different crosslinking density[J]. International Journal of Adhesion and Adhesives, 2011, 31(7): 760-766. |
| 10 | Lee J H, Park J, Myung M H, et al. Stretchable and recoverable acrylate-based pressure sensitive adhesives with high adhesion performance, optical clarity, and metal corrosion resistance[J]. Chemical Engineering Journal, 2021, 406: 126800. |
| 11 | Lee S H, You R, Yoon Y I, et al. Preparation and characterization of acrylic pressure-sensitive adhesives based on UV and heat curing systems[J]. International Journal of Adhesion and Adhesives, 2017, 75: 190-195. |
| 12 | Czech Z, Kabatc J, Kowalczyk A, et al. Application of selected 2-methylbenzothiazoles AS cationic photoreactive crosslinkers for pressure-sensitive adhesives based on acrylics[J]. International Journal of Adhesion and Adhesives, 2015, 58: 1-6. |
| 13 | Kim J S, Kim H J, Kim Y D. Flexibility properties of pressure-sensitive adhesive with different pattern of crosslinking density for electronic displays[J]. Journal of Materials Research and Technology, 2021, 15: 1408-1415. |
| 14 | Back J H, Baek D, Sim K B, et al. Optimization of recovery and relaxation of acrylic pressure-sensitive adhesives by using UV patterning for flexible displays[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 4331-4340. |
| 15 | Mao J, Li T F, Luo Y W. Significantly improved electromechanical performance of dielectric elastomers via alkyl side-chain engineering[J]. Journal of Materials Chemistry C, 2017, 5(27): 6834-6841. |
| 16 | Lee J H, Lee T H, Shim K S, et al. Effect of crosslinking density on adhesion performance and flexibility properties of acrylic pressure sensitive adhesives for flexible display applications[J]. International Journal of Adhesion and Adhesives, 2017, 74: 137-143. |
| 17 | Lee J H, Lee T H, Shim K S, et al. Molecular weight and crosslinking on the adhesion performance and flexibility of acrylic PSAs[J]. Journal of Adhesion Science and Technology, 2016, 30(21): 2316-2328. |
| 18 | Lee J H, Shim G S, Kim H J, et al. Adhesion performance and recovery of acrylic PSA with acrylic elastomer (AE) blends via thermal crosslinking for application in flexible displays[J]. Polymers, 2019, 11(12): 1959. |
| 19 | Bartkowiak M, Czech Z, Kim H J, et al. Photoreactive UV-crosslinkable acrylic pressure-sensitive adhesives (PSA) containing multifunctional photoinitiators[J]. Polymers, 2021, 13(24): 4413. |
| 20 | Chen Z Q, Xiao Y H, Fang J W, et al. Ultrasoft-yet-strong pentablock copolymer as dielectric elastomer highly responsive to low voltages[J]. Chemical Engineering Journal, 2021, 405: 126634. |
| 21 | 徐菘. RAFT乳液聚合可控制备SBAS新型水性压敏胶[D]. 杭州: 浙江大学, 2015. |
| Xu S. Development of novel water-based high performance pressure-sensitive adhesive of SBAS via RAFT emulsion polymerization[D]. Hangzhou: Zhejiang University, 2015. | |
| 22 | Ferguson C J, Hughes R J, Nguyen D, et al. Ab initio emulsion polymerization by RAFT-controlled self-assembly[J]. Macromolecules, 2005, 38(6): 2191-2204. |
| 23 | Wang X G, Luo Y W, Li B G, et al. Ab initio batch emulsion RAFT polymerization of styrene mediated by poly(acrylic acid-b-styrene) trithiocarbonate[J]. Macromolecules, 2009, 42(17): 6414-6421. |
| 24 | Ma Z P, Xie Y H, Mao J E, et al. Thermoplastic dielectric elastomer of triblock copolymer with high electromechanical performance[J]. Macromolecular Rapid Communications, 2017, 38(16): 1700268. |
| 25 | Wu L F, Cochran E W, Lodge T P, et al. Consequences of block number on the order-disorder transition and viscoelastic properties of linear (AB) n multiblock copolymers[J]. Macromolecules, 2004, 37(9): 3360-3368. |
| 26 | Guo Y L, Gao X A, Luo Y W. Suppressing the long-chain branching in the synthesis of poly(styrene-b-butyl acrylate-b-styrene) in RAFT emulsion polymerization by tuning the interfacial properties[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(12): 1464-1473. |
| 27 | Hadjichristidis N, Pispas S, Floudas G. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications[M]. Hoboken, NJ: Wiley, 2003. |
| 28 | Swann J M G, Topham P D. Design and application of nanoscale actuators using block-copolymers[J]. Polymers, 2010, 2(4): 454-469. |
| 29 | Fang Y, Xia J. Highly stretchable, soft, and clear viscoelastic film with good recoverability for flexible display[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38398-38408. |
| 30 | 高扬. 纳米BaTiO3增强丙烯酸酯嵌段共聚物介电弹性体机电性能[D]. 杭州: 浙江大学, 2021. |
| Gao Y. Mechanical and electrical properties of acrylate block copolymer dielectric elastomer reinforced by nano BaTiO3 [D]. Hangzhou: Zhejiang University, 2021. | |
| 31 | 冒杰. 介电弹性体新材料与纤维状驱动器的设计与可控制备[D]. 杭州: 浙江大学, 2020. |
| Mao J. Design and controllable preparation of dielectric elastomer materials and fibrous actuators[D]. Hangzhou: Zhejiang University, 2020. | |
| 32 | Roos A, Creton C. Effect of the presence of diblock copolymer on the nonlinear elastic and viscoelastic properties of elastomeric triblock copolymers[J]. Macromolecules, 2005, 38(18): 7807-7818. |
| 33 | Ha M H, Choi J K, Park B M, et al. Highly flexible cover window using ultra-thin glass for foldable displays[J]. Journal of Mechanical Science and Technology, 2021, 35(2): 661-668. |
| 34 | Tong J D, Jerôme R. Dependence of the ultimate tensile strength of thermoplastic elastomers of the triblock type on the molecular weight between chain entanglements of the central block[J]. Macromolecules, 2000, 33(5): 1479-1481. |
| 35 | Sakaguchi Y, Kosaka N, Hori N, et al. Rheological analysis of the adhesion surface with a scanning probe microscope (SPM)[J]. International Journal of Adhesion and Adhesives, 2011, 31(1): 1-8. |
| 36 | Fujita M, Takemura A, Ono H, et al. Effects of miscibility and viscoelasticity on shear creep resistance of natural-rubber-based pressure-sensitive adhesives[J]. Journal of Applied Polymer Science, 2000, 75(12): 1535-1545. |
| 37 | Fujita M, Kajiyama M, Takemura A, et al. Effects of miscibility on probe tack of natural-rubber-based pressure-sensitive adhesives[J]. Journal of Applied Polymer Science, 1998, 70(4): 771-776. |
| [1] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
| [2] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
| [3] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
| [4] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
| [5] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
| [6] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
| [7] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
| [8] | Shuangqiao YANG, Baojie WEI, Dawei XU, Li LI, Qi WANG. Application of aluminum-plastic packaging and new recycling technology of the waste [J]. CIESC Journal, 2022, 73(8): 3326-3337. |
| [9] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
| [10] | Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646. |
| [11] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
| [12] | Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis [J]. CIESC Journal, 2022, 73(8): 3625-3635. |
| [13] | Duanhui GAO, Weiqiang XIAO, Feng GAO, Qian XIA, Manqiu WANG, Xinbo LU, Xiaoli ZHAN, Qinghua ZHANG. Preparation and application of polyimide-based aerogels [J]. CIESC Journal, 2022, 73(7): 2757-2773. |
| [14] | Chuyue CAI, Xiaoming FANG, Zhengguo ZHANG, Ziye LING. Enhancing heat dissipation performance of paraffin/silicone rubber phase change thermal pad by introducing carbon nanotubes [J]. CIESC Journal, 2022, 73(7): 2874-2884. |
| [15] | Shuyan WANG, Ruiyang ZHANG, Run LIU, Kai LIU, Ying ZHOU. Interfacial structure regulation of Mn(BO2)2/BNO to enhance catalytic ozone decomposition performance [J]. CIESC Journal, 2022, 73(7): 3193-3201. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
