CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1282-1290.DOI: 10.11949/j.issn.0438-1157.20180695
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Bingguo ZHU(),Xinming WU,Liang ZHANG,Enhui SUN,Haisong ZHANG,Jinliang XU()
Received:
2018-06-26
Revised:
2019-01-04
Online:
2019-04-05
Published:
2019-04-05
Contact:
Jinliang XU
通讯作者:
徐进良
作者简介:
<named-content content-type="corresp-name">朱兵国</named-content>(1988—),男,博士研究生,<email>13919835339@163.com</email>|徐进良(1966—),男,博士,教授,<email>xjl@ncepu.edu.cn</email>
基金资助:
CLC Number:
Bingguo ZHU, Xinming WU, Liang ZHANG, Enhui SUN, Haisong ZHANG, Jinliang XU. Flow and heat transfer characteristics of supercritical CO2 in vertical tube[J]. CIESC Journal, 2019, 70(4): 1282-1290.
朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180695
作者 | 传热关联式 | 工质 |
---|---|---|
Bishopet al. | | 水 |
Jackson | | 二氧化碳 |
Kimet al. | | 二氧化碳 |
Table 1 Heat transfer correlations from different authors
作者 | 传热关联式 | 工质 |
---|---|---|
Bishopet al. | | 水 |
Jackson | | 二氧化碳 |
Kimet al. | | 二氧化碳 |
1 | Hu L , Chen D Q , Huang Y P , et al . Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor[J]. Energy, 2015, 89: 874-886. |
2 | 董力 . 超临界二氧化碳发电技术概述[J]. 中国环保产业, 2017, 5: 48-52. |
Dong L . Summarization on power technology of supercritical carbon dioxide[J]. China Environmental Protection Industry, 2017, 5: 48-52. | |
3 | Zhang X R , Yamaguchi H . An experimental study on evacuated tube solar collector using supercritical CO2 [J]. Applied Thermal Engineering, 2008, 28: 1225–1233. |
4 | Moullec Y L . Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle[J]. Energy, 2013, 49: 32-46. |
5 | 刘生晖, 黄彦平, 刘光旭, 等 . 竖直圆管内超临界二氧化碳强迫对流传热实验研究[J]. 核动力工程, 2017, 38(1): 1-5. |
Liu S H , Huang Y P , Liu G X , et al . Investigation of correlation for forced convective heat transfer to supercritical carbon dioxide flowing in a vertical tube[J]. Nuclear Power Engineering, 2017, 38(1): 1-5. | |
6 | Kim D E , Kim M H . Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240: 3336-3349. |
7 | Bae Y Y . Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel[J]. Nuclear Engineering and Design, 2011, 241: 3164-3177. |
8 | Kim D E , Kim M H . Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32: 176-191. |
9 | Shiralkar B S , Griffith P . The effect of swirl inlet conditions flow direction and tube diameter on the heat transfer to fluids at supercritical pressure[J]. Journal of Heat Transfer, 1970, 92(3): 465-471. |
10 | Shiralkar B S , Griffith P . Deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes[J]. Journal of heat Transfer, 1969, 91(1): 27-36. |
11 | Liu G X , Huang Y P , Wang J F , et al . Effect of buoyancy and flow acceleration on heat transfer of supercritical CO2 in natural circulation loop[J]. International Journal of Heat and Mass Transfer, 2015, 91: 640-646. |
12 | Kim H G , Kim H Y , Song J H , et al . Heat transfer to supercritical pressure carbon dioxide flowing upward through tubes and a narrow annulus passage[J]. Progress in Nuclear Energy, 2008, 50: 518-525. |
13 | Xu J L , Yang C Y , Zhang W , et al .Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure[J]. International Journal of Heat and Mass Transfer, 2015, 80: 748-758. |
14 | 王淑香, 张伟, 牛志愿, 等 .超临界压力下CO2在螺旋管内的混合对流换热[J].化工学报, 2013, 64(11): 3917-3926. |
Wang S X , Zhang W , Niu Z Y , et al . Mixed convective heat transfer to supercritical carbon dioxide in helically coiled tube[J]. CIESC Journal, 2013, 64(11): 3917-3926. | |
15 | Xu R N , Luo F , Jiang P X . Experimental research on the turbulent convection heat transfer of supercritical pressure CO2 in a serpentine vertical mini tube[J]. International Journal of Heat and Mass Transfer, 2015, 91: 552-561. |
16 | Jiang P X , Zhang Y , Shi R F . Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51: 3052-3056. |
17 | Jiang P X , Liu B , Zhao C R , et al . Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime[J]. International Journal of Heat and Mass Transfer, 2013, 56: 741-749. |
18 | Liao S M , Zhao T S . An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45: 5025-5034. |
19 | Li Z H , Jiang P X , Zhao C R , et al . Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube[J]. Exp.Therm. Fluid, 2010, 34: 1162-1171. |
20 | Liao S M , Zhao T S . Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels[J]. Journal of Heat Transfer, 2002, 124(3): 413-420. |
21 | Bae Y Y . Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel[J]. Nuclear Engineering and Design, 2011, 241: 3164-3177. |
22 | Bae Y Y , Kim H Y , Kang D J . Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34: 1295-1308. |
23 | 刘生晖, 黄彦平, 刘光旭, 等 . 浮升力因子和流动加速因子改进及其在超临界流体混合对流传热中的应用[J]. 中国科学: 技术科学, 2017, 47(2): 176-189. |
Liu S H , Huang Y P , Liu G X , et al . New improvements of buoyancy and flow acceleration parameters and their applications on mixed convective heat transfer to supercritical fluids[J]. Sci. Sin. Tech., 2017, 47(2): 176-189. | |
24 | Bishop A A, Sandberg R O , Tong L S . Forced convective heat transfer to water at near critical temperature and supercritical pressures[R]. Pittsburgh, USA, 1964. |
25 | Jackson J D . Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nucl. Eng. Des., 2013, 264: 24-40. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[8] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[9] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[10] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[11] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[12] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[13] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[14] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[15] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||