CIESC Journal ›› 2018, Vol. 69 ›› Issue (S2): 9-16.DOI: 10.11949/j.issn.0438-1157.20181148
Previous Articles Next Articles
DING Yi1, DING Guoliang2, ZHUANG Dawei2
Received:
2018-10-08
Revised:
2018-10-15
Online:
2018-12-31
Published:
2018-12-31
Supported by:
supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51521004) and the Program of Shanghai Academic Research Leader (16XD1401500).
丁屹1, 丁国良2, 庄大伟2
通讯作者:
丁国良
基金资助:
国家自然科学基金创新团队项目(51521004);上海市优秀学术带头人计划项目(16XD1401500)。
CLC Number:
DING Yi, DING Guoliang, ZHUANG Dawei. Principles and advances in perspiration cooling materials on human comfort adjustment[J]. CIESC Journal, 2018, 69(S2): 9-16.
丁屹, 丁国良, 庄大伟. 排汗冷却材料用于人体舒适度调节的技术原理及进展[J]. 化工学报, 2018, 69(S2): 9-16.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181148
[1] | ZHANG Y, BISHOP P A, GREEN J M, et al.Evaluation of a carbon dioxide personal cooling device for workers in hot environments[J].Journal of Occupational & Environmental Hygiene, 2010, 7(7):389-396. |
[2] | ZHANG G, ZHANG X, HUANG H, et al.Toward wearable cooling devices:highly flexible electrocaloric Ba0.67Sr0.33TiO3 nanowire arrays[J].Advanced Materials, 2016, 28(24):4811-4816. |
[3] | GAO C, KUKLANE K, HOLMÉR I.Cooling vests with phase change materials:the effects of melting temperature on heat strain alleviation in an extremely hot environment[J].European Journal of Applied Physiology, 2011, 111(6):1207. |
[4] | DELKUMBUREWATTE G B, DIAS T.Wearable cooling system to manage heat in protective clothing[J].Journal of the Textile Institute Proceedings & Abstracts, 2012, 103(5):483-489. |
[5] | Cooling fabrics market analysis, by type (synthetic and natural), by application (sports apparel, protective wear, lifestyle, and others), by region (North America, Europe, Asia Pacific, South & Central America, and MEA), and segment forecasts, 2018-2025[EB/OL].[2018-05-19].https://www.grandviewresearch.com/industry-analysis/cooling-fabrics-market. |
[6] | 唐虹, 简洁, 晓梦.可呼吸的面料——吸湿快干功能性面料的发展[J].中国服饰, 2007, (5):132-135. TANG H, JIAN J, XIAO M.Breathable fabric-the development of fast dry functional fabric[J].China Fashion, 2007, (5):132-135. |
[7] | 何天虹.纯纤维素纤维吸湿排汗快干织物的设计开发与研究[D].天津:天津工业大学,2007. HE T H.Design and development of cellulose fiber based fast dry fabric[D].Tianjin:Tianjin Polytechnic University, 2007. |
[8] | 倪迈.新型吸湿排汗针织运动服装面料的研究开发[D].上海:东华大学, 2010. NI M.Perspiration absorption of new fabrics knitted sportswear[D].Shanghai:Donghua University, 2010. |
[9] | 张红霞, 刘芙蓉, 王静, 等.织物结构对吸湿快干面料导湿性能的影响[J].纺织学报, 2008, 29(5):31-33. ZHANG H X, LIU F R, WANG J, et al.Effects of fabric weave and cover factor on moisture transfer ability of moisture absorbent and fast drying fabric[J].Journal of Textile Research, 2008, 29(5):31-33. |
[10] | XING S, JIANG J, PAN T.Interfacial microfluidic transport on micropatterned superhydrophobic textile[J].Lab on a Chip, 2013, 13(10):1937-1947. |
[11] | ZHONG Y, ZHANG F, WANG M, et al.Reversible humidity sensitive clothing for personal thermoregulation[J].Scientific Reports, 2017, 7:44208. |
[12] | LENG J, LAN X, LIU Y, et al.Shape-memory polymers and their composites:stimulus methods and applications[J].Progress in Materials Science, 2011, 56(7):1077-1135. |
[13] | 王文欣.环氧基和聚乙烯醇基形状记忆复合材料的驱动性能研究[D].哈尔滨:哈尔滨工业大学, 2017. WANG W X.Actuation properties of epoxy-based and poly(vinyl alcohol)-based shape memory composites[D].Harbin:Harbin Institute of Technology, 2017. |
[14] | QI X, YAO X, DENG S, et al.Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites[J].Journal of Materials Chemistry A, 2014, 2(7):2240-2249. |
[15] | JUNG Y C, SO H H, CHO J W.Water responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane[J].Journal of Macromolecular Science Part B, 2006, 45(4):453-461. |
[16] | YANG B, LI C, LEE C M, et al.On the effects of moisture in a polyurethane shape memory polymer[J].Smart Materials & Structures, 2004, 13(1):191. |
[17] | HUANG W M, YANG B, AN L, et al.Water-driven programmable polyurethane shape memory polymer:demonstration and me-chanism[J].Applied Physics Letters, 2005, 86(11):114105. |
[18] | LIU Y, LI Y, YANG G, et al.Multi-stimuli responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals[J].ACS Appl.Mater.Interfaces, 2015, 7(7):4118. |
[19] | BAI Y, CHEN X.A fast water-induced shape memory polymer based on hydroxyethyl cellulose/graphene oxide composites[J].Composites Part A:Applied Science & Manufacturing, 2017, 103:9-16. |
[20] | HAN C H, HAN D D, JIANG H B, et al.Facile fabrication of moisture responsive graphene actuators by moderate flash reduction of graphene oxides films[J].Optical Materials Express, 2017, 7(7):2617. |
[21] | XU G, CHEN J, ZHANG M, et al.An ultrasensitive moisture driven actuator based on small flakes of graphene oxide[J].Sensors & Actuators B Chemical, 2017, 242:418-422. |
[22] | WANG W, YAO L, CHENG C Y, et al.Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables[J].Science Advances, 2017, 3(5):e1601984. |
[23] | ANDY F.New fabric opens air vents with workout sweat[EB/OL].[2018-05-19].https://www.ucdavis.edu/news/new-fabric-opens-air-vents-workout-sweat. |
[24] | GE Y, CAO R, YE S, et al.A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients[J].Chemical Communications, 2018, 54(25):3126-3129. |
[25] | BAUER F, DENNELER S, WILLERT-PORADA M.Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane[J].Journal of Polymer Science Part B:Polymer Physics, 2005, 43(7):786-795. |
[26] | MA M, GUO L, ANDERSON D G, et al.Bio-inspired polymer composite actuator and generator driven by water gradients[J].Science, 2013, 339(6116):186-189. |
[27] | ZHANG L, LIANG H, JACOB J, et al.Erratum:photogated humidity-driven motility[J].Nature Communications, 2015, 6:7429. |
[28] | HU J, MENG H, LI G, et al.A review of stimuli-responsive polymers for smart textile applications[J].Smart Material Structures, 2012, 21(5):53001-53023. |
[29] | TURNER K.Nike sphere macro react[EB/OL].[2018-05-19].https://www.ponoko.com/blog/how-to-make/nike-sphere-macro-react. |
[30] | Move over, moisture-wicking whatever[EB/OL].[2018-05-19].http://www.atacamadry.com. |
[1] | Deqi PENG, Yuchuan ZHANG, Yang WU, Tianlan YU, Zhuowei TAN, Shuying WU, Ying CHEN, Mingcheng TANG, Jianguo PENG. Scale-resisting properties and microscopic characteristics of the spiral insert of heat exchange tube [J]. CIESC Journal, 2023, (): 1-10. |
[2] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[3] | LIU Na, LI Junming. Effect of tube expansion on flow condensation heat transfer characteristics in micro-fin tube of small condenser [J]. CIESC Journal, 0, (): 0-0. |
[4] | LI Ke, WEN Jian, WANG Simin. Effect of axial heat conduction on heat transfer performance of plate fin heat exchanger under condition of different thermal boundary condition [J]. CIESC Journal, 0, (): 5-0. |
[5] | Bing NI, Shengqiang SHEN, Yihao LI, Xiaohua LIU, Yiqiao LI, Shanlin LIU. Effect of salinity on fouling deposition characteristics in hyperhaline seawater [J]. CIESC Journal, 2019, 70(11): 4363-4369. |
[6] | WANG Haoxian, LI Jianrui, HU Haitao, DING Guoliang, WU Chunlin, CHEN Hui, XING Zhanyang. Analysis of influence of surging on heat transfer characteristics of liquified natural gas flow boiling in channel of plate-fin heat exchanger [J]. CIESC Journal, 2018, 69(S2): 101-108. |
[7] | ZHOU Kan, LI Wei, LI Junye, ZHU Hua, SHENG Kuang, BAI Guanghui, CHANG Hao. Flow boiling heat transfer characteristics of superhydrophilic modified surface in microchannels [J]. CIESC Journal, 2018, 69(S2): 82-88. |
[8] | CHENG Saifeng, LIANG Caihua, ZHAO Wei, ZHANG Xiaosong. Numerical simulation of droplet coalescence and bounce process on hydrophobic surfaces [J]. CIESC Journal, 2018, 69(S2): 153-160. |
[9] | LIU Yang, HAN Jitian, YOU Huailiang. Performance of combined cooling, heating and power system based on SOFC/GT/TCO2 integrated power cycle and LiBr-water absorption chiller [J]. CIESC Journal, 2018, 69(S2): 341-349. |
[10] | XU Jiaxing, CHAO Jingwei, LI Tingxian, WANG Ruzhu. Preparation and characterization of expanded graphite/metal organic frameworks composite sorbent [J]. CIESC Journal, 2018, 69(S2): 492-499. |
[11] | DU Baozhou, LI Huijun, GUO Baocang, KONG Lingjian, LIU Zhigang. Flow boiling heat transfer and pressure drop characteristics in micro channel with micro pin fins [J]. CIESC Journal, 2018, 69(12): 4979-4989. |
[12] | XIN Hui, CHEN Bin, ZHOU Zhifu, TIAN Jiameng. Numerical study of multi-pulsed cryogen spray cooling for laser lipolysis [J]. CIESC Journal, 2018, 69(12): 4966-4971. |
[13] | WANG Dongmin, DONG Lining, QUAN Xiaojun. Deposition mechanisms and boiling heat transfer of modified SiO2 nanoparticles deposition layer in boiling experiments [J]. CIESC Journal, 2018, 69(10): 4200-4205. |
[14] | YUAN Jindou, WANG Yanbo, HU Han, YU Xiongjiang, XU Jinliang. Flow condensation heat transfer on surfaces with different wettability in mini-channel [J]. CIESC Journal, 2018, 69(10): 4156-4166. |
[15] | LIANG Lingjiao, LIU Jinping, XU Xiongwen. Novel flat plate evaporator of loop gravity assisted heat pipe for high heat flux electronic cooling [J]. CIESC Journal, 2018, 69(10): 4231-4238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||