[1] |
LI J, CHIANG K F, CHANG S W, et al. High power electronic component:review[J]. Recent Patents on Engineering, 2008, 2(3):174-188.
|
[2] |
MICHEL B, AGOSTINI B, FABBRI M, et al. State-of-the-art of high heat flux cooling technologies[J]. Heat Transfer Engineering, 2007, 28(4):258-281.
|
[3] |
SIMONS R E, CHU R C. Application of thermoelectric cooling to electronic equipment:a review and analysis[C]//Semi-Therm. Semiconductor Thermal Measurement and Management Symposium, 16th. San Jose, USA:Institute of Electrical and Electronics Engineers, 2002:1-9.
|
[4] |
MAIDANIK Y F, FERSHTATER Y G, GONCHAROV K A. Capillary-pump loop for the systems of thermal regulation of spacecraft[R]. Aerospace, 1991.
|
[5] |
LI J, WANG D, PETERSON G P B. A compact loop heat pipe with flat square evaporator for high power chip cooling[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2011, 1(4):519-527.
|
[6] |
ZHOU G H, LI J, LÜ L. An ultra-thin miniature loop heat pipe cooler for mobile electronics[J]. Applied Thermal Engineering, 2016, 109:514-523.
|
[7] |
SARNO C, TANTOLIN C, HODOT R, et al. Loop thermosyphon thermal management of the avionics of an in-flight entertainment system[J]. Applied Thermal Engineering, 2013, 51(1/2):764-769.
|
[8] |
SAMBA A, LOUAHLIA H. Two-phase thermosyphon loop for cooling outdoor telecommunication equipments[J]. Applied Thermal Engineering, 2013, 50(1):1351-1360.
|
[9] |
KHRUSTALEV D. Loop thermosyphons for cooling of electronics[C]//Semi-Therm. Semiconductor Thermal Measurement and Management Symposium, 16th. San Jose, USA:Institute of Electrical and Electronics Engineers, 2002:145-150.
|
[10] |
ZHANG P, LI X, SHANG S, et al. Effect of Height Difference on The Performance of Two-phase Thermosyphon Loop Used in Air-conditioning System[C]//15th International Refrigeration and Air Conditioning Conference, Purdue, 2014:2519-2524.
|
[11] |
HE J J, LIU J P, XU X W, Analysis and experimental study of nucleation site densities in the boiling of mixed refrigerants[J]. International Journal of Heat & Mass Transfer, 2017, 105:452-463.
|
[12] |
KOCAMUSTAFAOGULLARI G, LSHⅡ M G. Interfacial area and nucleation site density in boiling systems[J]. International Journal of Heat & Mass Transfer, 1983, 26(9):1377-1387.
|
[13] |
LIU Z, WINTERTON R. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation[J]. International Journal of Heat & Mass Transfer, 1991, 34(11):2759-2766.
|
[14] |
COOPER M. Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties[J]. Advances in Heat Transfer, 1984, 16:157-239.
|
[15] |
RAHMATOLLAH K, PALM B. Influence of system pressure on the boiling heat transfer coefficient in a closed two-phase thermosyphon loop[J]. International Journal of Thermal Sciences, 2002, 41(7):619-624.
|
[16] |
HAHNE E, GROSS U. The influence of the inclination angle on the performance of a closed two-phase thermosyphon[J]. Journal of Heat Recovery Systems, 1981, 1(4):267-274.
|
[17] |
AUNG N Z, LI S J. Numerical investigation on effect of riser diameter and inclination on system parameters in a two-phase closed loop thermosyphon solar water heater[J]. Energy Conversion & Management, 2013, 75(5):25-35.
|
[18] |
MAMELI M, MANGINI D, VANOLI G, et al. Advanced multi-evaporator loop thermosyphon[J]. Energy, 2016, 112:562-573.
|
[19] |
LIU Z H, YANG X F, WANG G S, et al. Influence of carbon nanotube suspension on the thermal performance of a miniature thermosyphon[J]. International Journal of Heat and Mass Transfer, 2010, 53(9/10):1914-1920.
|
[20] |
ISMAIL T M S, RAMASAMY S K. An experimental investigation of the thermal performance of two-phase closed thermosyphon using zirconia nanofluid[J]. Thermal Science, 2016, 20(5):1565-1574.
|
[21] |
ZHANG N L. Innovative heat pipe systems using a new working fluid[J]. International Communications in Heat & Mass Transfer, 2001, 28(8):1025-1033.
|
[22] |
SCOTT G L, MASSOUD K. Pool-boiling CHF enhancement by modulated porous-layer coating:theory and experiment[J]. International Journal of Heat & Mass Transfer, 2001, 44(22):4287-4311.
|
[23] |
HE H B, FURUSATO K, YAMADA M, et al. Efficiency enhancement of a loop thermosyphon on a mixed-wettability evaporator surface[J]. Applied Thermal Engineering, 2017, 123:1245-1254.
|
[24] |
方书起, 赵凌, 史启辉, 等. 螺旋槽重力热管强化传热实验研究[J]. 化学工程, 2008, 36(6):19-21. FANG S Q, ZHAO L, SHI Q H, et al. Experimental research of ehanced heat transfer for spiral groove gravity heat pipe[J]. Chemical Engineering, 2008, 36(6):19-21
|
[25] |
吴晓敏, 朱竞飞, 王维城. 小热管强化传热的研究[J]. 工程热物理学报, 2004, 25(2):299-301. WU X M, ZHU J F, WANG W C. Heat transfer enhancement in small diameter heat pipes[J]. Journal of Engineering Thermophysics, 2004, 25(2):299-301.
|
[26] |
RAHMATOLLAH K. Heat transfer in the evaporator of an advanced two-phase thermosyphon loop[J]. International Journal of Refrigeration, 2005, 28(2):190-202.
|
[27] |
张发勇, 刘金平, 许雄文. 制冷工况下降膜冷凝器的制冷剂积存特性与传热性能[J]. 化工学报, 2015, 66(12):5012-5021. ZHANG F Y, LIU J P, XU X W. Characteristics of refrigerant hold-up and heat transfer performance of falling film condenser under refrigerating condition[J]. CIESC Jounal, 2015, 66(12):5012-5021.
|
[28] |
MAYDANIK Y. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5/6):635-657.
|
[29] |
FOX R W, MACDONALD A T. Introduction to fluid mechanics[M]. Englewood:Wiley, 1973.
|