1 |
ZhouH C, LongJ R, YaghiO M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674.
|
2 |
ZhangW, XiongR G. Ferroelectric metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 1163-1195.
|
3 |
ZhangY B, SuJ, FurukawaH, et al. Single-crystal structure of a covalent organic framework[J]. Journal of the American Chemical Society, 2013, 135(44): 16336-16339.
|
4 |
WallerP J, GandaraF, YaghiO M. Cheminform abstract: chemistry of covalent organic frameworks[J]. Cheminform, 2016, 47(5): 636.
|
5 |
TengB, PeiC, ZhangD, et al. Gas storage in porous aromatic frameworks (PAFs) [J]. Energy & Environmental Science, 2011, 4(10): 3991-3999.
|
6 |
ChakrabortyB, DaluiM, SikdarB K. Design of a reliable cache system for heterogeneous CMPs[J]. Journal of Circuits Systems & Computers, 2018, (3): 1850219.
|
7 |
AyedC, SilvaL C D, WangD, et al. Designing conjugated microporous polymers for visible light-promoted photocatalytic carbon-carbon double bond cleavage in aqueous medium[J]. Journal of Materials Chemistry A, 2018, 6(44): 22145-22151.
|
8 |
NiamhO, NicolaG, JamesS L. Porous liquids[J]. Chemistry, 2007, 13(11): 3020-3025.
|
9 |
JamesS L. The dam bursts for porous liquids[J]. Advanced Materials, 2016, 28(27): 5712-5716.
|
10 |
李彦霖, 段尊斌, 霍添, 等. 多孔液体新型材料研究及应用进展[J]. 化工进展, 2017, 36(4): 1342-1350.
|
|
LiY L, DuanZ B, HuoT, et al. Progresses in exploration and application of porous liquid materials[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1342-1350.
|
11 |
李晓强, 丁玉栋, 廖强, 等. 多孔液体及其二氧化碳气体分离研究进展[J]. 化工进展, 2017, 36(9): 3362-3372.
|
|
LiX Q, DingY D, LiaoQ, et al. Review on porous liquids and its application in carbon dioxide sequestration[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3362-3372.
|
12 |
AtwoodJ L, BarbourL J, JergaA, et al. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity[J]. Science, 2002, 298(5595): 1000-1002.
|
13 |
RipmeesterJ A, EnrightG D, RatcliffeC I, et al. What we have learned from the study of solid p-tert-butylcalix[4]arene compounds[J]. Chemical Communications, 2006, 38(48): 4986-4996.
|
14 |
CairaM R, BourneS A, MhlongoW T, et al. New crystalline forms of permethylated beta-cyclodextrin[J]. Chemical Communications, 2004, 10(19): 2216-2217.
|
15 |
GiriN, DavidsonC, MelaughG, et al. Alkylated organic cages: from porous crystals to neat liquids[J]. Chemical Science, 2012, 3(6): 2153-2157.
|
16 |
MelaughG, GiriN, DavidsonC E, et al. Designing and understanding permanent microporosity in liquids[J]. Physical Chemistry Chemical Physics, 2014, 16(20): 9422-9431.
|
17 |
GiriN, PópoloM G D, MelaughG, et al. Liquids with permanent porosity[J]. Nature, 2015, 527(7577): 216-220.
|
18 |
ZhangF, YangF, HuangJ, et al. Thermodynamics and kinetics of gas storage in porous liquids[J]. Journal of Physical Chemistry B, 2016, 120(29): 7195-7200.
|
19 |
GreenwayR L, HoldenD, EdenE G B, et al. Understanding gas capacity, guest selectivity, and diffusion in porous liquids[J]. Chemical Science, 2017, 8(4): 2640-2651.
|
20 |
ShanW, FulvioP F, KongL, et al. New class of type Ⅲ porous liquids: a promising platform for rational adjustment of gas sorption behavior[J]. ACS Appl. Mater. Interfaces, 2017, 10(1): 32-36.
|
21 |
LiuS, LiuJ, HouX, et al. Porous liquid: a stable ZIF-8 colloid in ionic liquid with permanent porosity [J]. Langmuir, 2018, 34(12): 3654-3660.
|
22 |
BourlinosA B, GiannelisE P, ZhangQ, et al. Surface-functionalized nanoparticles with liquid-like behavior: the role of the constituent components [J]. The European Physical Journal E-Soft Matter, 2006, 20(1): 109-117.
|
23 |
FernandesN J, WallinT J, VaiaR A , et al. Cheminform abstract: nanoscale ionic materials[J]. Cheminform, 2014, 26(1): 84-96.
|
24 |
PetitC, ParkY, LinK Y A, et al. Spectroscopic investigation of the canopy configurations in nanoparticle organic hybrid materials of various grafting densities[J]. Journal of Physical Chemistry C, 2011, 116(1): 516-525.
|
25 |
LinK Y, ParkA H. Effects of bonding types and functional groups on CO2 capture using novel multiphase systems of liquid-like nanoparticle organic hybrid materials[J]. Environmental Science & Technology, 2011, 45(15): 6633-6639.
|
26 |
ParkY, DecaturJ, LinK Y, et al. Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization[J]. Physical Chemistry Chemical Physics, 2011, 13(40): 18115-18122.
|
27 |
LinK Y A, PetitC, ParkA H A. Effect of SO2 on CO2 capture using liquid-like nanoparticle organic hybrid materials [J]. Energy & Fuels, 2013, 27(8): 4167-4174.
|
28 |
ParkY, PetitC, HanP, et al. Effect of canopy structures and their steric interactions on CO2 sorption behavior of liquid-like nanoparticle organic hybrid materials[J]. RSC Advances, 2014, 4(17): 8723-8726.
|
29 |
ZhangJ, ChaiS, QiaoZ, et al. Porous liquids: a promising class of media for gas separation[J]. Angewandte Chemie International Edition, 2014, 54(3): 932-936.
|
30 |
ShiT, ZhengY, WangT, et al. Effect of pore size on the carbon dioxide adsorption behavior of porous liquids based on hollow silica[J]. Chemphyschem, 2018, 19(1): 130-137.
|
31 |
DaiS, LiP, SchottJ A, et al. Electrostatic-assisted liquefaction of porous carbons[J]. Angewandte Chemie International Edition, 2017, 56(47): 14958-14962.
|
32 |
LinK Y. Design, synthesis and evaluation of liquid-like nanoparticle organic hybrid materials (NOHMs) for carbon dioxide capture [D]. New York: Columbia University, 2012.
|
33 |
张志强,屈一新,任慧. 纳米SiO2物理吸附乙醇的密度泛函研究[J]. 物理化学学报, 2006, 22(7): 820-825.
|
|
ZhangZ Q, QuY X, RenH. Density functional theory studies on ethanol physisorption on ultrafine silica[J]. Acta Physico-Chimica Sinica, 2006, 22(7): 820-825.
|
34 |
ZhuravlevL T. The surface chemistry of amorphous silica. Zhuravlev model[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2000, 173(1):1-38.
|
35 |
AndaelmJ, King-SmithR D, FitzgeraldG. Geometry optimization of solids using delocalized internal coordinates[J]. Chemical Physics Letters, 2001, 335(3): 321-326.
|