CIESC Journal ›› 2020, Vol. 71 ›› Issue (1): 81-91.DOI: 10.11949/0438-1157.20191184
• Reviews and monographs • Previous Articles Next Articles
Received:
2019-09-11
Revised:
2019-10-11
Online:
2020-01-05
Published:
2020-01-05
Contact:
Chunxi LI
通讯作者:
李春喜
基金资助:
CLC Number:
Chunxi LI. Recent advances in thermodynamic modelling of ionic liquid solutions[J]. CIESC Journal, 2020, 71(1): 81-91.
李春喜. 离子液体的溶液热力学模型研究进展[J]. 化工学报, 2020, 71(1): 81-91.
Add to citation manager EndNote|Ris|BibTeX
ILs’ structure and interaction force | Thermodynamic model | Model parameter | Application |
---|---|---|---|
neutral molecule①;SR② | SRK | 3- adjustable parameter for ( | VLE correlation for 48 binary ILs aqueous solutions, AARD<1% for most systems [ |
neutral molecule;SR | PR | 3-adjustable parameter ( | VLE correlation for 28 ILs-containing binary mixture with ARD=3.38% [ |
neutral molecule; SR + assoc③ | PR-TS? | 5-molecule parameter | H2S solubility in 12 ILs, AAD=3.4%[ |
neutral molecule;SR | NRTL, UIQUAC | 3-NRTL parameter ( | LLE prediction for IL-containing ternary systems with binary parameters [ |
neutral molecule;SR | Wilson-NRF | 4-adjustable parameter for a binary system, i.e. ( | LLE correlation for 38 binary and 52 ternary systems with RMSD being 8.78 and 4.08 respectively[ |
neutral molecule (group solution)④;SR | UNIFAC | group volume, surface area and interaction energy parameter | correlation of |
neutral molecule;SR | NRTL-SAC | 4- molecule-specific parameters | correlation of |
neutral molecule with homo-segment⑤;hc⑥+dis⑦+ polar⑧+ assoc | PC-PSAFT | segment parameter ( | accurate correlation of CO2 solubility in ILs[ |
neutral molecule with homo-segment;LJ⑨+chain⑩+polar+assoc | soft-SAFT | segment parameter ( | correlation and prediction of CO2 solubility in 7 ILs[ |
molecule with heterosegment?; hs?+chain+dis+assoc | SAFT | 9 adjustable parameters | accurate correlation of CO2 solubility in 11 ILs[ |
neutral molecule with homo-segment; hc+dis | PHSC | chain site parameter( | correlation and prediction of H2 solubility in 11 ILs[ |
neutral molecule with homo-segments; SWC?+dis | SWCF | segment parameter ( | VLE correlation for CO2 and alkane in 12 ILs with ARD=5.2%[ |
neutral molecule with hetero-segments; SWC+dis+assoc | SWCF | segment parameter ( | VLE correlation for 22 IL-containing binary systems with ARD=5.4% [ |
neutral molecule with homo-segments; SR | Sanchez-Lacombe EOS | 3-molecular parameter( | solubility of 11 refrigerants in 12 ILs with ARD=5.7% [ |
neutral molecule (group solution);SR | GC-EOS | 3-4 adjustable NRTL group parameter ( | solubility correlation for 11 gas in ILs with ARD< 10% in most cases[ |
strong electrolyte?; DH?+dis | Pitzer | | solubility correlation for inorganic salts in IL aqueous solution[ |
strong electrolyte; NRTL-SR?+ PDH? | e-NRTL | 2-adjustable parameter( | correlation of activity coefficients of electrolyte aqueous with satisfactory results[ |
strong electrolyte; LR+MR?+SR | e-UNIQUAC | 6 adjustable MR parameter( | ionic mean activity coefficients and VLE of electrolyte solutions[ |
strong electrolyte; LR+ MR+ SR | e-UNIFAC | 6 adjustable group parameter( | ionic mean activity coefficients and VLE of electrolyte solutions[ |
strong electrolyte; hs+dis+LR | P=P hs +P dis +P elec | 2 group dispersive parameter( | density prediction for 29 ILs with ARD=0.63% [ |
strong electrolyte; SWC+assoc + MSA? | SWCF-VR-MSA | site parameter ( | correlation and prediction of density, activity coefficients and VLE for ILs aqueous solutions[ |
strong electrolyte; hc+dis+DH | ePC-SAFT | segment parameter (m, | prediction of derivative properties of ILs and CO2 solubility in ILs[ |
Table 1 Treatment of ILs’ structure and interaction forces in various thermodynamic models
ILs’ structure and interaction force | Thermodynamic model | Model parameter | Application |
---|---|---|---|
neutral molecule①;SR② | SRK | 3- adjustable parameter for ( | VLE correlation for 48 binary ILs aqueous solutions, AARD<1% for most systems [ |
neutral molecule;SR | PR | 3-adjustable parameter ( | VLE correlation for 28 ILs-containing binary mixture with ARD=3.38% [ |
neutral molecule; SR + assoc③ | PR-TS? | 5-molecule parameter | H2S solubility in 12 ILs, AAD=3.4%[ |
neutral molecule;SR | NRTL, UIQUAC | 3-NRTL parameter ( | LLE prediction for IL-containing ternary systems with binary parameters [ |
neutral molecule;SR | Wilson-NRF | 4-adjustable parameter for a binary system, i.e. ( | LLE correlation for 38 binary and 52 ternary systems with RMSD being 8.78 and 4.08 respectively[ |
neutral molecule (group solution)④;SR | UNIFAC | group volume, surface area and interaction energy parameter | correlation of |
neutral molecule;SR | NRTL-SAC | 4- molecule-specific parameters | correlation of |
neutral molecule with homo-segment⑤;hc⑥+dis⑦+ polar⑧+ assoc | PC-PSAFT | segment parameter ( | accurate correlation of CO2 solubility in ILs[ |
neutral molecule with homo-segment;LJ⑨+chain⑩+polar+assoc | soft-SAFT | segment parameter ( | correlation and prediction of CO2 solubility in 7 ILs[ |
molecule with heterosegment?; hs?+chain+dis+assoc | SAFT | 9 adjustable parameters | accurate correlation of CO2 solubility in 11 ILs[ |
neutral molecule with homo-segment; hc+dis | PHSC | chain site parameter( | correlation and prediction of H2 solubility in 11 ILs[ |
neutral molecule with homo-segments; SWC?+dis | SWCF | segment parameter ( | VLE correlation for CO2 and alkane in 12 ILs with ARD=5.2%[ |
neutral molecule with hetero-segments; SWC+dis+assoc | SWCF | segment parameter ( | VLE correlation for 22 IL-containing binary systems with ARD=5.4% [ |
neutral molecule with homo-segments; SR | Sanchez-Lacombe EOS | 3-molecular parameter( | solubility of 11 refrigerants in 12 ILs with ARD=5.7% [ |
neutral molecule (group solution);SR | GC-EOS | 3-4 adjustable NRTL group parameter ( | solubility correlation for 11 gas in ILs with ARD< 10% in most cases[ |
strong electrolyte?; DH?+dis | Pitzer | | solubility correlation for inorganic salts in IL aqueous solution[ |
strong electrolyte; NRTL-SR?+ PDH? | e-NRTL | 2-adjustable parameter( | correlation of activity coefficients of electrolyte aqueous with satisfactory results[ |
strong electrolyte; LR+MR?+SR | e-UNIQUAC | 6 adjustable MR parameter( | ionic mean activity coefficients and VLE of electrolyte solutions[ |
strong electrolyte; LR+ MR+ SR | e-UNIFAC | 6 adjustable group parameter( | ionic mean activity coefficients and VLE of electrolyte solutions[ |
strong electrolyte; hs+dis+LR | P=P hs +P dis +P elec | 2 group dispersive parameter( | density prediction for 29 ILs with ARD=0.63% [ |
strong electrolyte; SWC+assoc + MSA? | SWCF-VR-MSA | site parameter ( | correlation and prediction of density, activity coefficients and VLE for ILs aqueous solutions[ |
strong electrolyte; hc+dis+DH | ePC-SAFT | segment parameter (m, | prediction of derivative properties of ILs and CO2 solubility in ILs[ |
Fluid phase equilibria | Phase equilibria equation | Note |
---|---|---|
GLE | | |
LLE | | |
VLE | | |
SLE | | 固体溶质2析出时的活度 |
Table 2 Thermodynamic properties required in calculation of fluid phase equilibria
Fluid phase equilibria | Phase equilibria equation | Note |
---|---|---|
GLE | | |
LLE | | |
VLE | | |
SLE | | 固体溶质2析出时的活度 |
1 | Dong K , Liu X , Dong H , et al . Multiscale studies on ionic liquids [J]. Chem. Rev. , 2017, 117: 6636-6695. |
2 | Heintz A . Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review [J]. J. Chem. Thermodynamics, 2005, 37: 525-535. |
3 | Lei Z , Chen B , Li C , et al . Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids [J]. Chem. Rev. , 2008, 108: 1419-1455. |
4 | Maia F M , Tsivintzelis I , Rodriguez O , et al . Equation of state modelling of systems with ionic liquids: literature review and application with the Cubic Plus Association (CPA) model [J]. Fluid Phase Equilibria, 2012, 332: 128-143. |
5 | 宋红艳, 王均凤, 沈冲, 等 . 计算离子液体溶液汽液相平衡的分子热力学模型[J]. 中国科学: 化学, 2010, 40(9): 1297-1303. |
Song H Y , Wang J F , Shen C , et al . A molecular thermodynamic model for calculating vapor liquid equilibrium of ionic liquid containing systems [J]. Scientia Sinica Chimica, 2010, 40(9): 1297-1303. | |
6 | 史奇冰, 郑逢春, 李春喜, 等 . 用NRTL方程计算离子液体的汽液平衡[J]. 化工学报, 2005, 56(5): 751-756. |
Shi Q B , Zheng F C , Li C X , et al . Calculation of vapor-liquid equilibrium for ionic liquid-containing systems with NRTL equation [J]. Journal of Chemical Industry and Engineering(China), 2005, 56(5): 751-756. | |
7 | Lei Z , Zhang J , Li Q , et al . UNIFAC model for ionic liquids [J]. Ind. Eng. Chem. Res. , 2009, 48: 2697-2704. |
8 | 曹伟红, 韩世钧 . 从液体混合物的黏度数据推算汽液平衡数据[J]. 化工学报, 1990, 41(4): 508-514. |
Cao W H , Han S J . Prediction of vapor-liquid equilibrium data from viscosities of liquid mixtures [J]. Journal of Chemical Industry and Engineering(China), 1990, 41(4): 508-514. | |
9 | 许映杰, 朱霄, 李浩然 . 离子液体谱学性质和热力学数据关联的新进展[J]. 中国科学: 化学, 2014, 44(6): 877-888. |
Xu Y J , Zhu X , Li H R . New progress in relationships between the spectroscopic and thermodynamic properties of ionic liquids [J]. Scientia Sinica: Chimica, 2014, 44(6): 877-888. | |
10 | 陈庚华, 严新焕, 韩世钧, 等 . 环己烷-正丁醇-甲苯有关二元体系加压相平衡[J]. 化工学报, 1994, 45(1): 94-101. |
Chen G H , Yan X H , Han S J , et al . Phase equilibria under superatmospheric for binary systems of cyclohexane, 1-butanol, and toluene [J]. Journal of Chemical Industry and Engineering(China), 1994, 45(1): 94-101. | |
11 | 韩世钧 . 丙烯腈-乙腈-水三元体系汽液平衡的研究[J]. 化工学报, 1980, 32(3): 241-254. |
Han S J . The relationship of vapor-liquid equilibria in acrylonitrile acetonitrile-water ternary systems [J]. Journal of Chemical Industry and Engineering(China), 1980, 32(3): 241-254. | |
12 | 周星风, 倪良, 韩世钧 . 拟静态法测定汽液平衡的研究[J]. 化工学报, 1990, 41(1): 122-126. |
Zhou X F , Ni L , Han S J . A study on pseudo-static method for VLE determination [J]. Journal of Chemical Industry and Engineering(China), 1990, 41(1): 122-126. | |
13 | 曹伟红, 李春喜, 韩世钧 . 液体混合物的热导率方程[J] 化工学报, 1989, 40(5): 556-563. |
Cao W H , Li C X , Han S J . The thermal conductivity equation of liquid mixture [J]. Journal of Chemical Industry and Engineering(China), 1989, 40(5): 556-563. | |
14 | 黄强, 陈庚华, 韩世钧, 等 . 基于无限稀释活度系数模型的状态方程[J]. 化工学报, 1997, 48(1): 22-27. |
Huang Q , Chen G H , Han S J , et al . Equation of state based on model of infinite dilution activity coefficients [J]. Journal of Chemical Industry and Engineering(China), 1997, 48(1): 22-27. | |
15 | 张锁江, 韩世钧 . 电解质活度系数与溶剂化数[J]. 化工学报, 1994, 45(3): 293-297. |
Zhang S J , Han S J . Electrolytic activity coefficient and solvated number [J]. Journal of Chemical Industry and Engineering(China), 1994, 45(3): 293-297. | |
16 | 胡英, 刘国杰, 徐英年, 等 . 应用统计力学-流体物性的研究基础[M]. 北京: 化学工业出版社, 1990. |
Hu Y , Liu G J , Xu Y N , et al . Applied Statistical Mechanics-fundamentals to the Fluid Thermophysical Properties [M]. Beijing: Chemical Industry Press, 1990. | |
17 | Prausnitz J M , Lichtenthaler R N , de Azevedo E G . 流体相平衡的分子热力学[M]. 3版. 北京: 化学工业出版社, 2006: 137. |
Prausnitz J M , Lichtenthaler R N , de Azevedo E G . Molecular Thermodynamics of Fluid Phase Equilibria [M]. 3rd ed. Beijing: Chemical Industry Press, 2006: 137. | |
18 | 李以圭, 陆九芳 . 电解质溶液理论[M]. 北京: 清华大学出版社, 2005: 84. |
Li Y G , Lu J F . Electrolyte Solution Theory [M]. Beijing: Tsinghua University Press, 2005: 84 | |
19 | 高光华, 童景山 . 化工热力学[M]. 2版. 北京: 清华大学出版社, 2007. |
Gao G H , Tong J S . Chemical Engineering Thermodynamics [M]. 2nd ed. Beijing: Tsinghua University Press, 2007. | |
20 | Chapman W G , Gubbins K E , Jackson G , et al . New reference equation of state for associating liquids [J]. Ind. Eng. Chem. Res. , 1990, 29: 1709-1721. |
21 | Wang J , Li C , Shen C , et al . Towards understanding the electrostatic interaction on the density of ionic liquids[J]. Fluid Phase Equilibria, 2009, 279(2): 87-91. |
22 | Glasser L . Lattice and phase transition thermodynamics of ionic liquids [J]. Thermochimica Acta, 2004, 421: 87-93. |
23 | Binnemans K . Ionic liquid crystals [J]. Chem. Rev. , 2005, 105: 4148-4204. |
24 | Tohru I , Haruka Y . Micelle formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate: surfactant chain length dependence of the critical micelle concentration [J]. J. Colloid Interface Science, 2011, 356(2): 798-802. |
25 | Lee A A , Vella D , Perkin S , et al . Are room-temperature ionic liquids dilute electrolytes? [J]. J. Phys. Chem. Lett. , 2015, 6: 159-163. |
26 | Tokuda H , Tsuzuki S , Susan A B H , et al . How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties [J]. J. Phys. Chem. B. , 2006, 110: 19593-19600. |
27 | Lee B S , Lin S T . A priori prediction of dissociation phenomena and phase behaviors of ionic liquids [J]. Ind. Eng. Chem. Res. , 2015, 54: 9005-9012. |
28 | Jiang S , Pitzer K S . Phase equilibria and volumetric properties of aqueous CaCl2 by an equation of state [J]. AIChE Journal, 1996, 42(2): 585-594. |
29 | Dong K , Zhang S , Wang Q . A new class of ion-ion interaction: Z-bond [J]. Science China-Chemistry, 2015, 58(3): 495-500. |
30 | Jiang W , Wang Y , Voth G A . Molecular dynamics simulation of nanostructural organization in ionic liquid/water mixtures [J]. J. Phys. Chem. B, 2007, 111: 4812-4818. |
31 | Osti N C , van Aken K L , Thompson M W , et al . Solvent polarity governs ion interactions and transport in a solvated room temperature ionic liquid [J]. J. Phys. Chem. Lett. , 2017, 81: 167-171. |
32 | Wang X , Zhang S , Yao J , et al . The polarity of ionic liquids: relationship between relative permittivity and spectroscopic parameters of probe [J]. Ind. Eng. Chem. Res. , 2019, 58(17): 7352-7361. |
33 | Moganty S S , Baltus R E . Regular solution theory for low pressure carbon dioxide solubility in room temperature ionic liquids: ionic liquid solubility parameter from activation energy of viscosity [J]. Ind. Eng. Chem. Res. , 2010, 49: 5846-5853. |
34 | Afsharian M S , Paraj A , Mousavian S M A . Thermodynamic representation of ionic liquids phase equilibrium with the Wilson-NRF model [J]. J. Mol. Liq. , 2016, 223: 541-548. |
35 | Zhao J , Li C , Wang Z . Vapor pressure measurement and prediction for ethanol + methanol and ethanol + water systems containing ionic liquids [J]. J. Chem. Eng. Data, 2006, 51: 1755-1760. |
36 | Pereiro A B , Rodriguez A . Study on the phase behaviour and thermodynamic properties of ionic liquids containing imidazolium cation with ethanol at several temperatures [J]. J. Chem. Thermodynamics, 2007, 39: 978-989. |
37 | Fredenslund A , Jones R L , Prausnitz J M . Group-contribution estimation of activity coefficients in nonideal liquid mixtures [J]. AIChE Journal, 1975, 21(6): 1086-1099. |
38 | Wang J , Sun W , Li C , et al . Correlation of infinite dilution activity coefficient of solute in ionic liquid using UNIFAC model [J]. Fluid Phase Equilibria, 2008, 264: 235-241. |
39 | Nebig S , Gmehling J . Prediction of phase equilibria and excess properties for systems with ionic liquids using modified UNIFAC: typical results and present status of the modified UNIFAC matrix for ionic liquids [J]. Fluid Phase Equilibria, 2011, 302: 220-225. |
40 | Hector T , Gmehling J . Present status of the modified UNIFAC model for the prediction of phase equilibria and excess enthalpies for systems with ionic liquids [J]. Fluid Phase Equilibria, 2014, 371: 82-92. |
41 | Chen C C , Simoni L D , Brennecke J F , et al . Correlation and prediction of phase behavior of organic compounds in ionic liquids using the nonrandom two-liquid segment activity coefficient model [J]. Ind. Eng. Chem. Res. , 2008, 47: 7081-7093. |
42 | Alvarez V H , Aznar M . Thermodynamic modeling of vapor–liquid equilibrium of binary systems ionic liquid + supercritical (CO2 or CHF3) and ionic liquid + hydrocarbons using Peng–Robinson equation of state [J]. J. Chin. Inst. Chem. Eng. , 2008, 39: 353-360. |
43 | Valderrama J O , Robles P A . Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids [J]. Ind. Eng. Chem. Res. , 2007, 46: 1338-1344. |
44 | Shen C , Li C , Li X , et al . Estimation of densities of ionic liquids using Patel-Teja equation of state and critical parameters determined from group contribution method [J]. Chem. Eng. Sci. , 2011, 66(12): 2690-2698. |
45 | Lazzús J A . Thermodynamic modeling based on particle swarm optimization to predict phase equilibrium of binary systems containing ionic liquids [J]. J. Mol. Liq. , 2013, 186: 44-51. |
46 | Hekayati J , Roosta A , Javanmardi J . Thermodynamic modeling of refrigerants solubility in ionic liquids using original and e-Modified Sanchez-Lacombe equations of state [J]. Fluid Phase Equilibria, 2015, 403: 14-22. |
47 | Bazargani Z , Sabzi F . Thermodynamic modeling of CO2 absorption in 1-butyl-3-methyl imidazolium-based ionic liquids [J]. J. Mol. Liq. , 2016, 223: 235-242. |
48 | Domanska U , Paduszynski K , Krolikowski M , et al . Separation of 2-phenylethanol from water by liquid-liquid extraction with ionic liquids: new experimental data and modeling with modern thermodynamic tools [J]. Ind. Eng. Chem. Res. , 2016, 55: 5736-5747. |
49 | Paduszynski K . Thermodynamic modeling of multicomponent liquid-liquid equilibria in ionic liquid systems with PC-SAFT equation of state [J]. Ind. Eng. Chem. Res. , 2018, 57: 5413-5432. |
50 | Ji X , Adidharma H . Thermodynamic modeling of ionic liquid density with heterosegmented statistical associating fluid theory [J]. Chem. Eng. Sci. , 2009, 64: 1985-1992. |
51 | Breure B , Bottini S B , Witkamp G J , et al . Thermodynamic modeling of the phase behavior of binary systems of ionic liquids and carbon dioxide with the group contribution equation of state [J]. J. Phys. Chem. B, 2007, 111(51): 14265-14270. |
52 | Gardas R L , Dagade D H , Coutinho J A P , et al . Thermodynamic studies of ionic interactions in aqueous solutions of imidazolium based ionic liquids [Emim][Br] and [Bmim][Cl] [J]. J. Phys. Chem. B, 2008, 112: 3380-3389. |
53 | Wang J , Li Z , Li C , et al . Density prediction of ionic liquids using a group contribution equation of state [J]. Ind. Eng. Chem. Res. , 2010, 49 (9): 4420–4425. |
54 | Li J , He C , Peng C , et al . Modeling of the thermodynamic properties of aqueous ionic liquid solutions with an equation of state for square-well chain fluid with variable range [J] Ind. Eng. Chem. Res. , 2011, 50: 7027-7040. |
55 | Shen G , Held C , Lu X , et al . Modeling thermodynamic derivative properties of ionic liquids with ePC-SAFT [J]. Fluid Phase Equilibria, 2015, 405: 73-82. |
56 | Chen C C , Song Y H . Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems [J]. AIChE Journal, 2004, 50(8): 1928-1941. |
57 | Kiepe J , Noll O , Gmehling J . Modified LIQUAC and modified LIFAC—a further development of electrolyte models for the reliable prediction of phase equilibria with strong electrolytes [J]. Ind. Eng. Chem. Res. , 2006, 45(7): 2361-2373. |
58 | Zafarani-Moattar M T , Shekaari H , Agha E M H . Thermodynamic studies on the phase equilibria of ternary (ionic liquid, 1-hexyl-3-methyl imidazolium chloride+D-fructose or sucrose+water) systems at 298.15 K [J]. Fluid Phase Equilibria, 2017, 436: 38-46. |
59 | Afsharian M S , Paraj A . Thermodynamic representation of ionic liquids phase equilibrium with the PDH-Wilson-NRF model [J]. J. Mol. Liq. , 2018, 272: 53-59. |
60 | Song Y , Chen C C . Symmetric electrolyte nonrandom two-liquid activity coefficient model [J]. Ind. Eng. Chem. Res. , 2009, 48: 7788-7797. |
61 | Krolikowska K , Paduszynski K , Zawadzki M . (Vapor-liquid) phase equilibria of an aqueous solution of bromide-based ionic liquids: measurements, correlations and application to absorption cycles [J]. Fluid Phase Equilibria, 2019, 494: 201-211. |
62 | Shojaeian A . Thermodynamic modeling of solubility of hydrogen sulfide in ionic liquids using Peng-Robinson-Two-State equation of state [J]. J. Mol. Liq. , 2017, 229: 591-598. |
63 | Simoni L D , Lin Y , Brennecke J F , et al . Modeling liquid-liquid equilibrium of ionic liquid systems with NRTL, electrolyte-NRTL, and UNIQUAC [J]. Ind. Eng. Chem. Res. , 2008, 47: 256-272. |
64 | Lei Z , Dai C , Liu X , et al . Extension of the UNIFAC model for ionic liquids [J]. Ind. Eng. Chem. Res. , 2012, 51: 12135-12144. |
65 | Kroon M C , Karakatsani E K , Economou I G , et al . Modeling of the carbon dioxide solubility in imidazolium-based ionic liquids with the tPC-PSAFT equation of state [J]. J. Phys. Chem. B, 2006, 110: 9262-9269. |
66 | Andreu J S , Vega L F . Capturing the solubility behavior of CO2 in ionic liquids by a simple model [J]. J. Phys. Chem. C, 2007, 111: 16028-16034. |
67 | Ji X , Adidharma H . Thermodynamic modeling of CO2 solubility in ionic liquid with heterosegmented statistical associating fluid theory [J]. Fluid Phase Equilibria, 2010, 293: 141-150. |
68 | Kordi A , Sabzi F . Thermodynamic modeling of hydrogen solubility in a series of ionic liquids [J]. Inter. J. Hydrogen Energy, 2018, 43: 18296-18305. |
69 | Wang T , Peng C , Liu H , et al . Description of the PVT behavior of ionic liquids and the solubility of gases in ionic liquids using an equation of state [J]. Fluid Phase Equilibria, 2006, 250: 150-157. |
70 | Wang T , Peng C , Liu H , et al . Equation of state for the vapor-liquid equilibria of binary systems containing imidazolium-based ionic liquids [J]. Ind. Eng. Chem. Res. , 2007, 46: 4323-4329. |
71 | Bermejo M D , Mendez D , Martın A . Application of a group contribution equation of state for the thermodynamic modeling of gas+ionic liquid mixtures[J]. Ind. Eng. Chem. Res. , 2010, 49: 4966-4973. |
72 | Liu Y , Chen L , Guo B , et al . Measurement and thermodynamic model study on solubility equilibrium of potassium phosphate, potassium hydrogen phosphate, and potassium carbonate in aqueous systems containing the ionic liquid [Bmim]Cl at 298.15 K [J]. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2016, 54: 76–81. |
73 | Belzeve L S , Brennecke J F , Stadtherr M A . Modeling of activity coefficients of aqueous solutions of quaternary ammonium salts with the electrolyte-NRTL equation [J]. Ind. Eng. Chem. Res. , 2004, 43: 815-825. |
74 | Sun Y , Schemann A , Held C , et al . Modeling thermodynamic derivative properties and gas solubility of ionic liquids with ePC-SAFT [J]. Ind. Eng. Chem. Res. , 2019, 58: 8401-8417. |
75 | Michelsena M L , Hendriks E M . Physical properties from association models [J]. Fluid Phase Equilibria, 2001, 180: 165-174. |
76 | Medeiros M , Tellez-Arredondo P . Cubic two-state equation of state for associating fluids [J]. Ind. Eng. Chem. Res. , 2008, 47: 5723-5733. |
77 | Zoubeik M , Mohamedali M , Henni A . Experimental solubility and thermodynamic modeling of CO2 in four new imidazolium and pyridinium-based ionic liquids [J]. Fluid Phase Equilibria, 2016, 419: 67-74. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[5] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[6] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[7] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[8] | Erqi WANG, Shuzhou PENG, Zhen YANG, Yuanyuan DUAN. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs [J]. CIESC Journal, 2023, 74(8): 3216-3225. |
[9] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[10] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[11] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[12] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[13] | Jingbo GAO, Qiang SUN, Qing LI, Yiwei WANG, Xuqiang GUO. Hydrate equilibrium model of hydrogen-containing gas considering hydrates structure transformation [J]. CIESC Journal, 2023, 74(2): 666-673. |
[14] | Jin CAI, Xiaohui WANG, Han TANG, Guangjin CHEN, Changyu SUN. Prediction of the phase equilibrium of semi-clathrate hydrate in TBAB aqueous solution [J]. CIESC Journal, 2023, 74(1): 408-415. |
[15] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||