1 |
金钦汉, 戴树珊, 黄卡玛. 微波化学[M]. 北京: 科学出版社, 1999.
|
|
JingQ H, DaiS S, HuangK M. Microwave Chemistry[M]. Beijing: Science Press, 1999.
|
2 |
FisherL B, DaltonT, EleckD. Bioeffects of microwave—a brief review [J]. Bioresource Technology Microwave Power, 1986, 87(2): 58-216.
|
3 |
SeniseJ T, JermoloviciusL A. Microwave chemistry—a fertile field for scientific research and industrial applications[C]// SBMO/IEEE MTT - International Microwave and Optoelectronics Conference Proceedings. 2003, 3(9): 1-6.
|
4 |
Al-HarahshehM, KingmanS W. Microwave-assisted leaching—a review [J]. Hydrometallurgy, 2004, 73(3/4): 189-203.
|
5 |
HaqueK E. Microwave energy for mineral treatment processes—a brief review [J]. Int. J. Miner. Process. , 1999, 57(1): 1-24.
|
6 |
GuoW C, ZhuX H, LiuH, et al. Effects of milk concentration and freshness on microwave dielectric properties[J]. Journal of Food Engineering, 2010, 99: 344-350.
|
7 |
ZhuX H, GuoW C, LiangZ B. Determination of the fat content in cow s milk based on dielectric properties[J]. Food Bioprocess Technol., 2015, 8: 1485-1494.
|
8 |
NunesA C, BohigasX, TejadaJ. Dielectric study of milk for frequencies between 1 and 20 GHz[J]. Journal of Food Engineering, 2006, 76: 250-255.
|
9 |
HasarU C. A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials [J]. IEEE Transaction on Microwave Theory and Techniques, 2009, 57(6): 1595-1601.
|
10 |
MeyerW. Dielectric measurements on polymeric materials by using superconducting microwave resonators [J]. IEEE Trans. Microwave Theory Tech., 1977, 25(10): 1092-1099.
|
11 |
TakanashiT, IijimaY, MiuraT. Measurement of the temperature dependence of relative permittivity by the cavity perturbation method[J]. IEEE MTT-S Int. Microwave Symp. Dig., 1997, 3: 1683-1686.
|
12 |
LiS, AkyelC, BosisioR G. Precise measurement and calculation on the complex dielectric constant of lossy materials using TM010 perturbation cavity techniques[J]. IEEE Trans. Microwave Theory Tech., 1981, 29(10): 1041-1048.
|
13 |
HartsgroveG, KraszewskiA, SurowiecA. Simulated biological materials for electromagnetic radiation absorption studies[J] Bioelectromagnetics, 1987, 8: 29-36.
|
14 |
MengB, BooskeJ, CooperR. Extended cavity perturbation technique to determine the complex permittivity of dielectric materials[J]. IEEE Trans. Microwave Theory Tech., 1995, 43(11): 2633-2635.
|
15 |
YuK B, OgourstsovS G, BelenkyV G, et al. Accurate microwave resonant method for complex permittivity measurements of liquids [J]. IEEE Transaction on Microwave Theory and Techniques, 2000, 48(11): 2159-2164.
|
16 |
ChenQ, HuangK M, LiuC J, et al. Coaxial apparatus to measure the permittivities of chemical solution at microwave frequencies[J]. Review of Scientific Instruments, 2017, (88): 046102.
|
17 |
ChenQ, HuangK M, YangX Q, et al. An artificial nerve network realization in the measurement of material permittivity[J]. Progress in Electromagnet Research, 2011, 116: 347-361.
|
18 |
Baker-JarvisJ, VanzuraE J, KissickW A. Improved technique for determining complex permittivity with the transmission/reflection method[J]. IEEE Trans. Microw. Theory Tech., 1990, 38(8): 1096-1103.
|
19 |
WilliamsT C, StuchlyM A, SavilleP. Modified transmission-reflection method for measuring constitutive parameters of thin flexible high-loss materials[J]. IEEE Trans. Microw. Theory Tech., 2003, 51(5): 1560-1566.
|
20 |
LiuC J, PuY. A microstrip resonator with slotted ground plane for complex permittivity measurements of liquids[J]. IEEE Microwave and Wireless Components Letters, 2008, 18( 4): 257-259.
|
21 |
LiuC J, TongF. An SIW resonator sensor for liquid permittivity measurements at C band[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(11): 751-753.
|
22 |
FesharekiF, AkyelC, WuK. Broadband permittivity measurement of dielectric materials using discontinuity in substrate integrated waveguide[J]. Electronics Letters, 2013, 49 (3): 1-2.
|
23 |
ZhangT, HongW, ZhangY, et al. Design and analysis of SIW cavity backed dual-band antennas with a dual-mode triangular-ring slot[J]. IEEE Transaction on Antenna and Propagation, 2014, 62(10): 5007-5016.
|
24 |
AbhishekS, VijayD, RabindraK, et al. Recent advance in theory and applications of substrate-integrated waveguides: a review[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2015, 10: 129-145.
|
25 |
HongW, WuK, TangH J, et al. SIW-like guided wave structures and applications[J]. IEICE Trans. Electron., 2009, e92-c(9): 1111-1123.
|
26 |
SulavA, GhiottoA, WuK. Simultaneous electric and magnetic two-dimensionally tuned parameter-agile SIW device[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 423-435.
|
27 |
HuangK M, CaoX J, LiuC J, et al. Measurement/computation of effective permittivity of dilute solution in saponification reaction[J]. IEEE Trans. Microw. Theory Tech., 2003, 51(10): 2106-2111.
|
28 |
LuoM, HuangK M, PuT L, et al. Measurement and prediction of dielectric for liquids based artificial nerve network[C]// Microwave and Millimeter Wave Technology (ICMMT), 2010 International Conference on. IEEE, 2010: 1083-1085.
|
29 |
ChenQ, HuangK M, YangX Q, et al. A BP neural network realization in the measurement of material permittivity[J]. Journal of Software, 2011, 6: 1089-1095.
|
30 |
SatoT, ChibaA, NozakiR. Dielectric relaxation mechanism and dynamical structures of the alcohol/water mixtures[J]. Journal of Molecular Liquids, 2002, 101: 99-111.
|
31 |
SatoT, ChibaA, NozakiR. Dynamical aspects of mixing schemes in ethanol-water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process[J]. The Journal of Chemical Physics, 1999, 5: 2508-2521.
|