CIESC Journal ›› 2012, Vol. 63 ›› Issue (11): 3609-3617.DOI: 10.3969/j.issn.0438-1157.2012.11.034

Previous Articles     Next Articles

An improved differential evolution algorithm and its application in dynamic optimization of fed-batch bioreactor

SUN Fan, DU Wenli, QIAN Feng   

  1. Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
  • Received:2012-03-08 Revised:2012-06-12 Online:2012-11-05 Published:2012-11-05
  • Supported by:

    supported by the National Basic Research Program of China(2012CB720500),the Key Program of the National Natural Science Foundation of China(U1162202),the National Outstanding Youth Fund Project(61222303),the National Natural Science Foundation of China(21276078,21206037)and the Shanghai Leading Academic Discipline Project(B504).

一种改进的差分进化算法及其在补料分批式生化反应器动态优化中的应用

孙帆, 杜文莉, 钱锋   

  1. 华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237
  • 通讯作者: 钱锋
  • 作者简介:孙帆(1985-),男,博士研究生。
  • 基金资助:

    国家重点基础研究发展计划项目(2012CB720500);国家自然科学基金重点基金项目(U1162202);国家优秀青年基金项目(61222303);国家自然科学基金项目(21276078,21206037);上海市重点学科建设项目(B504)。

Abstract: Two general approaches are adopted in solving dynamic optimization problems in biochemical processes,namely,the analytical and numerical methods.The numerical method based on heuristic algorithms has been widely used,but it is likely to converge to local optimum at a slow convergence speed. An improved differential evolution algorithm(IDEA)was proposed to solve dynamic optimization problems in this paper.In IDEA,a novel representation of the control variables was proposed for effectively solving dynamic optimization problems.A local search vector was designed in IDEA to enhance the local search ability of the algorithm.The efficiency and robustness of the algorithm was illustrated by solving several challenging case studies regarding the optimal control of fed-batch bioreactors.In order to fairly evaluate their advantages,a careful and critical comparison with several other direct approaches was provided.The results indicated that the proposed approach presented the best compromise between robustness and efficiency.

Key words: differential evolution algorithm, dynamic optimization, fed-batch bioreactor

摘要: 动态优化是生物化工过程中的重要课题,求解动态优化问题通常有两种方法:解析法和数值法。基于智能进化算法的数值方法在动态优化中的应用越来越广泛,但是这些方法局部寻优能力不强,容易陷入局部最优,并且求解速度相对较慢。针对这些方法的不足,提出了一种改进的差分进化算法,设计了新的局部寻优算子来增强算法的局部寻优能力,并且采用一种新的控制策略表示方法来求解动态优化问题。通过求解补料分批式生化反应器的动态优化实例,证明了算法的有效性和鲁棒性。通过与其他几种方法进行对比,实验结果表明,所提出的方法在优化结果和计算代价方面都有优势。

关键词: 差分进化算法, 动态优化, 补料分批式生化反应器

CLC Number: