1 |
Bayram A, Kankal M, Tayfur G, et al. Prediction of suspended sediment concentration from water quality variables[J]. Neural Computing and Applications, 2014, 24(5): 1079-1087.
|
2 |
Prasse C, Stalter D, Schulte-Oehlmann U, et al. Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies[J]. Water Research, 2015, 87: 237-270.
|
3 |
Oturan M A, Aaron J J. Advanced oxidation processes in water/wastewater treatment: principles and applications. A review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(23): 2577-2641.
|
4 |
Dai H, Chen W, Lu X. The application of multi-objective optimization method for activated sludge process: a review[J]. Water Science and Technology, 2016, 73(2): 223-235.
|
5 |
Lu Q, Wu H Y, Li H Y, et al. Enhanced biological nutrient removal in modified carbon source division anaerobic anoxic oxic process with return activated sludge pre-concentration[J]. Chinese Journal of Chemical Engineering, 2015, 23(6): 1027-1034.
|
6 |
Chachuat B, Roche N, Latifi M A. Long-term optimal aeration strategies for small-size alternating activated sludge treatment plants[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(5): 591-604.
|
7 |
O'Brien M, Mack J, Lennox B, et al. Model predictive control of an activated sludge process: a case study[J]. Control Engineering Practice, 2011, 19(1): 54-61.
|
8 |
Hameed M, Sharqi S S, Yaseen Z M, et al. Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia[J]. Neural Computing and Applications, 2017, 28(1): 893-905.
|
9 |
Syafiie S, Tadeo F, Martinez E, et al. Model-free control based on reinforcement learning for a wastewater treatment problem[J]. Applied Soft Computing, 2011, 11(1): 73-82.
|
10 |
Sweetapple C, Fu G T, Butler D. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions[J]. Water Research, 2014, 55: 52-62.
|
11 |
Ostace G S, Baeza J A, Guerrero J, et al. Development and economic assessment of different WWTP control strategies for optimal simultaneous removal of carbon, nitrogen and phosphorus[J]. Computers & Chemical Engineering, 2013, 53: 164-177.
|
12 |
Béraud B, Steyer J P, Lemoine C, et al. Towards a global multi objective optimization of wastewater treatment plant based on modeling and genetic algorithms[J]. Water Science and Technology, 2007, 56(9): 109-116.
|
13 |
张平, 苑明哲, 王宏. 前置反硝化污水生化处理过程优化控制[J]. 信息与控制, 2008, 37(1): 113-118, 128.
|
|
Zhang P, Yuan M Z, Wang H. Optimization control for pre-denitrification type of biological treatment process for wastewater[J]. Information and Control, 2008, 37(1): 113-118, 128.
|
14 |
韩广, 乔俊飞, 韩红桂, 等. 基于Hopfield神经网络的污水处理过程优化控制[J]. 控制与决策, 2014, 29(11): 2085-2088.
|
|
Han G, Qiao J F, Han H G, et al. Optimal control for wastewater treatment process based on Hopfield neural network[J]. Control and Decision, 2014, 29(11): 2085-2088.
|
15 |
Hreiz R, Roche N, Benyahia B, et al. Multi-objective optimal control of small-size wastewater treatment plants[J]. Chemical Engineering Research and Design, 2015, 102: 345-353.
|
16 |
Han H G, Qian H H, Qiao J F. Nonlinear multiobjective model-predictive control scheme for wastewater treatment process[J]. Journal of Process Control, 2014, 24(3): 47-59.
|
17 |
Qiao J F, Zhang W. Dynamic multi-objective optimization control for wastewater treatment process[J]. Neural Computing and Applications, 2018, 29(11): 1261-1271.
|
18 |
韩红桂, 张璐, 乔俊飞. 基于多目标粒子群算法的污水处理智能优化控制[J]. 化工学报, 2017, 68(4): 1474-1481.
|
|
Han H G, Zhang L, Qiao J F. Intelligent optimal control for wastewater treatment based on multi-objective particle swarm algorithm[J]. CIESC Journal, 2017, 68(4): 1474-1481.
|
19 |
李永明, 史旭东, 熊伟丽. 基于工况识别的污水处理过程多目标优化控制[J]. 化工学报, 2019, 70(11): 4325-4336.
|
|
Li Y M, Shi X D, Xiong W L. Condition recognition based intelligent multi-objective optimal control for wastewater treatment[J]. CIESC Journal, 2019, 70(11): 4325-4336.
|
20 |
Cristea V M, Pop C, Agachi P S. Model predictive control of the waste water treatment plant based on the benchmark simulation model No.1-BSM1[J]. Computer Aided Chemical Engineering, 2008, 25: 441-446.
|
21 |
Jeppsson U, Pons M N. The COST benchmark simulation model—current state and future perspective[J]. Control Engineering Practice, 2004, 12(3): 299-304.
|
22 |
Storn R, Price K. Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
|
23 |
艾兵, 董明刚, 敬超. 基于多策略排序变异的多目标差分进化算法[J]. 计算机应用研究, 2018, 35(7): 1950-1954.
|
|
Ai B, Dong M G, Jing C. Multi-objective differential evolution algorithm with multi-strategy and ranking-based mutation[J]. Application Research of Computers, 2018, 35(7): 1950-1954.
|
24 |
Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
|
25 |
Qiao J F, Hou Y, Han H G. Optimal control for wastewater treatment process based on an adaptive multi-objective differential evolution algorithm[J]. Neural Computing and Applications, 2019, 31(7): 2537-2550.
|
26 |
Lara A, Sanchez G, Coello C A C, et al. HCS: a new local search strategy for memetic multiobjective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(1): 112-132.
|
27 |
Sindhya K, Miettinen K, Deb K. A hybrid framework for evolutionary multi-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(4): 495-511.
|
28 |
Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
|
29 |
Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
|
30 |
周红标, 乔俊飞. 混合多目标骨干粒子群优化算法在污水处理过程优化控制中的应用[J]. 化工学报, 2017, 68(9): 3511-3521.
|
|
Zhou H B, Qiao J F. Optimal control of wastewater treatment process using hybrid multi-objective barebones particle swarm optimization algorithm[J]. CIESC Journal, 2017, 68(9): 3511-3521.
|