›› 2014, Vol. 65 ›› Issue (7): 2535-2543.DOI: 10.3969/j.issn.0438-1157.2014.07.015
Previous Articles Next Articles
FU Yuhang, ZHAO Shufang, WANG Wentan, JIN Yong, CHENG Yi
Received:
2014-03-31
Revised:
2014-04-14
Online:
2014-07-05
Published:
2014-07-05
Supported by:
付宇航, 赵述芳, 王文坦, 金涌, 程易
通讯作者:
程易
基金资助:
CLC Number:
FU Yuhang, ZHAO Shufang, WANG Wentan, JIN Yong, CHENG Yi. Application of lattice Boltzmann method for simulation of multiphase/multicomponent flow in microfluidics[J]. , 2014, 65(7): 2535-2543.
付宇航, 赵述芳, 王文坦, 金涌, 程易. 多相/多组分LBM模型及其在微流体领域的应用[J]. CIESC Journal, 2014, 65(7): 2535-2543.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.07.015
[1] | Luo Guangsheng (骆广生), Wang Kai (王凯), Xu Jianhong (徐建鸿), Lü Yangcheng (吕阳成), Wang Yujun (王玉军). Multiphase flow, transport and reaction in micro-structured chemical systems [J]. CIESC Journal (化工学报), 2010, 61 (7): 1621-1626 |
[2] | Liu Zhe (刘喆). Experimental study and numerical simulation of liquid-liquid mixing intensification in mini-/micro-scale reactors [D]. Beijing: Tsinghua University, 2010 |
[3] | Zhang J F. Lattice Boltzmann method for microfluidics: models and applications [J]. Microfluid. Nanofluid., 2011, 10 (1): 1-28 |
[4] | Mcnamara G R, Zanetti G. Use of the Boltzmann-equation to simulate lattice-gas automata [J]. Phys. Rev. Lett., 1988, 61 (20): 2332-2335 |
[5] | Chen S Y, Chen H D, Martinez D, Matthaeus W. Lattice Boltzmann model for simulation of magnetohydrodynamics [J]. Phys. Rev. Lett., 1991, 67 (27): 3776-3779 |
[6] | Koelman J M V A. A simple lattice Boltzmann scheme for Navier-Stokes fluid-flow [J]. Europhys. Lett., 1991, 15 (6): 603-607 |
[7] | Qian Y H, Dhumieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation [J]. Europhys. Lett., 1992, 17 (6): 479-484 |
[8] | Guo Zhaoli (郭照立), Zheng Chuguang (郑楚光). Theory and Applications of Lattice Boltzmann Method (格子Boltzmann方法的原理与应用) [M]. Beijing: Science Press, 2009 |
[9] | Succi S, d'Humières D, Qian Y, Orszag S A. On the small-scale dynamical behavior of lattice BGK and lattice Boltzmann schemes [J]. J. Sci. Comput., 1993, 8: 219-230 |
[10] | Gunstensen A K, Rothman D H, Zaleski S, Zanetti G. Lattice Boltzmann model of immiscible fluids [J]. Phys. Rev. A, 1991, 43 (8): 4320-4327 |
[11] | Rothman D H, Keller J M. Immiscible cellular-automaton fluids [J]. J. Stat. Phys., 1988, 52 (3/4): 1119-1127 |
[12] | Lishchuk S V, Care C M, Halliday I. Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents [J]. Phys. Rev. E, 2003, 67 (3): 036701 |
[13] | Latva-Kokko M, Rothman D H. Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids [J]. Phys. Rev. E, 2005, 71 (5): 056702 |
[14] | Dortona U, Salin D, Cieplak M, Rybka R B, Banavar J R. 2-Color nonlinear Boltzmann cellular-automata-surface-tension and wetting [J]. Phys. Rev. E, 1995, 51 (4): 3718-3728 |
[15] | Leclaire S, Reggio M, Trepanier J Y. Isotropic color gradient for simulating very high-density ratios with a two-phase flow lattice Boltzmann model [J]. Comput. Fluids., 2011, 48 (1): 98-112 |
[16] | Leclaire S, Reggio M, Trepanier J Y. Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model [J]. Appl. Math. Model., 2012, 36 (5): 2237-2252 |
[17] | Gunstensen A K. Lattice-Boltzmann studies of multiphase flow through porous media [D]. USA: MIT, 1992 |
[18] | Dupin M M, Halliday I, Care C M. Multi-component lattice Boltzmann equation for mesoscale blood flow [J]. J. Phys. A: Math. Gen., 2003, 36 (31): 8517-8534 |
[19] | Halliday I, Hollis A P, Care C M. Lattice Boltzmann algorithm for continuum multicomponent flow [J]. Phys. Rev. E, 2007, 76 (2): 026708 |
[20] | Leclaire S, Reggio M, Trepanier J Y. Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios [J]. J. Comput. Phys., 2013, 246: 318-342 |
[21] | Reis T, Phillips T N. Lattice Boltzmann model for simulating immiscible two-phase flows [J]. J. Phys. A: Math. Theor., 2007, 40: 4033-4053 |
[22] | Shan X W, Chen H D. Lattice Boltzmann model for simulating flows with multiple phases and components [J]. Phys. Rev. E, 1993, 47 (3): 1815-1819 |
[23] | Shan X W, Doolen G. Multicomponent lattice-Boltzmann model with interparticle interaction [J]. J. Stat. Phys., 1995, 81 (1/2): 379-393 |
[24] | Shan X W. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models [J]. Phys. Rev. E, 2006, 73 (4): 047701 |
[25] | Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K, Toschi F. Generalized lattice Boltzmann method with multirange pseudopotential [J]. Phys. Rev. E, 2007, 75 (2): 026702 |
[26] | Shan X W, Chen H D. Simulation of nonideal gases and liquid-gas phase-transitions by the lattice Boltzmann-equation [J]. Phys. Rev. E, 1994, 49 (4): 2941-2948 |
[27] | Swift M R, Osborn W R, Yeomans J M. Lattice Boltzmann simulation of nonideal fluids [J]. Phys. Rev. Lett., 1995, 75 (5): 830-833 |
[28] | van der Graaf S, Nisisako T, Schroen C G P H, van der Sman R G M, Boom R M. Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel [J]. Langmuir, 2006, 22 (9): 4144-4152 |
[29] | Swift M R, Orlandini E, Osborn W R, Yeomans J M. Lattice Boltzmann simulations of liquid-gas and binary fluid systems [J]. Phys. Rev. E, 1996, 54 (5): 5041-5052 |
[30] | Inamuro T, Konishi N, Ogino F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach [J]. Comput. Phys. Commun., 2000, 129 (1/2/3): 32-45 |
[31] | Zhang J F, Kwok D Y. Apparent slip over a solid-liquid interface with a no-slip boundary condition [J]. Phys. Rev. E, 2004, 70 (5): 056701 |
[32] | Zhang J F, Kwok D Y. A mean-field free energy lattice Boltzmann model for multicomponent fluids [J]. European Physical Journal-Special Topics, 2009, 171: 45-53 |
[33] | Tölke J F. Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA [J]. Computing and Visualization in Science, 2010, 13 (1): 29-39 |
[34] | Dupin M M, Halliday I, Care C M. Simulation of a microfluidic flow-focusing device [J]. Phys. Rev. E, 2006, 73(5): 055701(R) |
[35] | Anna S L, Bontoux N, Stone H A. Formation of dispersions using “flow focusing” in microchannels [J]. Appl. Phys. Lett., 2003, 82 (3): 364-366 |
[36] | Wang W T, Liu Z, Jin Y, Cheng Y. LBM simulation of droplet formation in micro-channels [J]. Chem. Eng. J., 2011, 173 (3): 828-836 |
[37] | Kim L S, Jeong H K, Ha M Y, Kim K C. Numerical simulation of droplet formation in a micro-channel using the lattice Boltzmann method [J]. Journal of Mechanical Science and Technology, 2008, 22(4): 770-779 |
[38] | Wu L, Tsutahara M, Kim L S, Ha M. Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel [J]. Int. J. Multiphas. Flow, 2008, 34 (9): 852-864 |
[39] | Gupta A, Murshed S M S, Kumar R. Droplet formation and stability of flows in a microfluidic T-junction [J]. Appl. Phys. Lett., 2009, 94 (16): 164107 |
[40] | Liu H H, Zhang Y H. Droplet formation in a T-shaped microfluidic junction [J]. J. Appl. Phys., 2009, 106 (3): 034906 |
[41] | Gupta A, Kumar R. Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction [J]. Microfluid. Nanofluid., 2010, 8 (6): 799-812. |
[42] | Yang H, Zhou Q, Fan L S. Three-dimensional numerical study on droplet formation and cell encapsulation process in a micro T-junction [J]. Chem. Eng. Sci., 2013, 87: 100-110 |
[43] | Inamuro T, Tajima S, Ogino F. Lattice Boltzmann simulation of droplet collision dynamics [J]. Int. J. Heat Mass Tran., 2004, 47 (21): 4649-4657 |
[44] | Shardt O, Derksen J J, Mita S K. Simulations of droplet coalescence in simple shear flow [J]. Langmuir, 2013, 29 (21): 6201-6212 |
[45] | Yu Z, Heraminger O, Fan L S. Experiment and lattice Boltzmann simulation of two-phase gas-liquid flows in microchannels [J]. Chem. Eng. Sci., 2007, 62 (24): 7172-7183 |
[46] | Yu Z, Fan L S. An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation [J]. J. Comput. Phys., 2009, 228 (17): 6456-6478 |
[47] | Yu Z, Fan L S. Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow [J]. Phys. Rev. E, 2010, 82 (4): 046708. |
[48] | Amaya-Bower L, Lee T. Numerical simulation of single bubble rising in vertical and inclined square channel using lattice Boltzmann method [J]. Chem. Eng. Sci., 2011, 66 (5): 935-952 |
[49] | Liu H H, Valocchi A J, Kang Q J. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations [J]. Phys. Rev. E, 2012, 85 (4): 046309 |
[50] | Wang Wentan (王文坦), Liu Zhe (刘喆), Shao Ting (邵婷), Zhao Shufang (赵述芳), Jin Yong (金涌), Cheng Yi (程易). μ-LIF visualization and LBM simulation of mixing behavior inside droplets in microchannels [J]. CIESC Journal (化工学报), 2012, 63 (2): 375-381 |
[51] | Zhao S F, Wang W T, Zhang M X, Shao T, Jin Y, Cheng Y. Three-dimensional simulation of mixing performance inside droplets in micro-channels by lattice Boltzmann method [J]. Chem. Eng. J., 2012, 207: 267-277 |
[52] | Wang W T, Shao T, Zhao S F, Jin Y, Cheng Y. Experimental and numerical study of mixing behavior inside droplets in microchannels [J]. AIChE J., 2013, 59: 1801-1813 |
[53] | Zhao S F, Wang W T, Shao T, Jin Y, Cheng Y. Lattice Boltzmann simulation of mixing process inside micro-droplets in a gas - liquid Taylor flow// 2013 AIChE Annual Meeting[C]. San Francisco, CA, USA, 2013 |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[5] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[6] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[7] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[8] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[9] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[10] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[11] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[12] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[13] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[14] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[15] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||