CIESC Journal ›› 2013, Vol. 64 ›› Issue (3): 1030-1035.DOI: 10.3969/j.issn.0438-1157.2013.03.034

Previous Articles     Next Articles

Formaldehyde electrocatalysis oxidation on glassy carbon electrode modified by Pt hollow nanosphere

CHENG Meiqin1, LIN Jianyun1, DENG Xiaocong1, ZHANG Xiantu1, ZHONG Qiling1, REN Bin2, TIAN Zhongqun2   

  1. 1. School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China;
    2. State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2012-05-17 Revised:2012-07-26 Online:2013-03-05 Published:2013-03-05
  • Supported by:

    supported by the National Natural Science Foundation of China(20663002),the Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces,Xiamen University(200511)and the Natural Science Foundation of Jiangxi Province(0620025).

铂纳米空球修饰玻碳电极对甲醛的电催化氧化行为

程美琴1, 林剑云1, 邓小聪1, 张贤土1, 钟起玲1, 任斌2, 田中群2   

  1. 1. 江西师范大学化学化工学院,江西 南昌330022;
    2. 厦门大学化学化工学院,固体表面物理化学国家重点实验室,福建 厦门 361005
  • 通讯作者: 钟起玲
  • 作者简介:程美琴(1985—),女,硕士研究生。
  • 基金资助:

    国家自然科学基金项目(20663002);厦门大学固体表面物理化学国家重点实验室基金项目(200511);江西省自然科学基金项目(0620025)。

Abstract: Platinum hollow nanospheres(PtHollow) were prepared in batch at room temperature by using selenium nanospheres as template,chloroplatinic acid precursor,ascorbic acid as reducing agent and SDSN as stabilizing agent,and the prepared platinum hollow spheres were used to modify glassy carbon electrode(PtHollow/GC).In addition,electro-deposition platinum nanoparticles modified glassy carbon electrode(Ptnano/GC) was prepared for comparison.The morphology and structure were characterized with X-ray diffraction,scanning electron microscopy and transmission electron microscope.Platinum hollow nanospheres had excellent dispersion and uniform size,and the diameter was about 120 nm.The shell was porous with a thickness smaller than 10 nm and was constructed by multi-dimensional and multi-level Pt atoms clusters.Formaldehyde was used as probe molecules,and the conventional electrochemical methods,including cyclic voltammetry and chronoamperometry curves were used to test the catalytic performance of PtHollow/GC and Ptnano/GC towards formaldehyde oxidation under the same electrical activity area condition.Current density at 0.64 V of PtHollow/GC was 1.5 times of that of Ptnano/GC.Oxidation potential at 0.5 mA穋m-2 current density of the former was more negative than the latter by about 30 mV.The experimental evidence indicated that compared with Ptnano/GC electrode,formaldehyde oxidation on PtHollow/GC electrode had lower activation energy,faster reaction speed and higher catalytic activity.These could provide experimental and theoretical basis for the preparation of anode catalyst in direct formaldehyde fuel cells.

Key words: selenium template, Pt hollow nanosphere, cyclic voltammetry, chronoamperometry

摘要: 以纳米硒球为模板,H2PtCl6为前驱体,以抗环血酸为还原剂,SDSN作稳定剂,在室温下批量制备了铂纳米空球(PtHollow)及其修饰玻碳(GC)电极(PtHollow/GC)。使用XRD、SEM和TEM等检测技术表征了其形貌与结构,结果表明,所制备的铂纳米空球分散性好,粒径比较均匀,约为120 nm;球壳多孔,壳厚<10 nm,由多维、多级的多晶铂原子团簇所构建。以甲醛为探针分子,采用循环伏安及计时电流等常规电化学方法比较了电活性面积基本一致的PtHollow/GC和电沉积铂纳米粒子(Ptnano)修饰GC电极(Ptnano/GC)催化甲醛氧化的性能,结果显示,位于0.64 V处的氧化峰电流密度,前者是后者氧化峰电流密度的1.5倍;氧化电流密度为0.5 mA·cm-2处的氧化电位,前者比后者负移了约30 mV。实验结果表明,与Ptnano/GC电极相比,甲醛在PtHollow/GC电极上氧化的活化能低,反应速度快,催化活性高。所得结果为直接甲醛燃料电池阳极催化剂的研制提供了一定的实验与理论依据。

关键词: 硒模板, 铂纳米空球, 循环伏安, 计时电流

CLC Number: