[1] |
CHAUDHURI S K, LOVLEY D R. Electricity generation by direct oxidation of glucose in mediator-less microbial fuel cells[J]. Nature Biotechnology, 2003, 21(10):1229-1232.
|
[2] |
MIN B, KIM J R, OH S E, et al. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Research, 2005, 39(20):4961-4968.
|
[3] |
CHENG S, LOGAN B E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells[J]. Bioresource Technology, 2011, 102(6):4468-4473.
|
[4] |
LIU H, CHENG S, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic, strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14):5488-5493.
|
[5] |
CHENG S, WU J C. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells[J]. Bioelectrochemistry, 2013, 92(5):22-26.
|
[6] |
MCCARTY P L, BAE J, KIM J. Domestic wastewater treatment as a net energy producer-can this be achieved[J]. Environmental Science & Technology, 2011, 45(17):7100-7106.
|
[7] |
ZHUANG L, YUAN Y, WANG Y, et al. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater[J]. Bioresource Technology, 2012, 123(14):406-412.
|
[8] |
DONG Y, QU Y, HE W H, et al. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode[J]. Bioresource Technology, 2015, 195(11):66-72.
|
[9] |
FENG Y J, HE W H, LIU J, et al. A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment[J]. Bioresource Technology, 2014, 156(1):132-138.
|
[10] |
RABAEY K, BOON N, SICILIANO S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology, 2004, 70(9):5373-5382.
|
[11] |
AELTERMAN P, RABAEY K, PHAM H T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(10):3388-3394.
|
[12] |
YOU S, ZHAO Q, ZHANG J, et al. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions[J]. Journal of Power Sources, 2007, 173(1):172-177.
|
[13] |
LEE J, PHUNG N T, CHANG I S, et al. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses[J]. FEMS Microbiology Letters, 2003, 223(2):185-191.
|
[14] |
FREGUIA S, RABAEY K, YUAN Z, et al. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells[J]. Water Research, 2008, 42(6/7):1387-1396.
|
[15] |
WAGNER R C, CALL D F, LOGAN B E. Optimal set anode potentials vary in bioelectrochemical systems[J]. Environmental Science & Technology, 2010, 44(16):6036-6041.
|
[16] |
ZEIKUS J G, TENDER L M, FINKELSTEIN D. Effect of electrode potential on electrode-reducing microbiota[J]. Environmental Science & Technology, 2006, 40(22):6990-6995.
|
[17] |
WANG X, FENG Y J, REN N Q, et al. Accelerated start-up of two-chambered microbial fuel cells:effect of anodic positive poised potential[J]. Electrochimica Acta, 2009, 54(3):1109-1114.
|
[18] |
AELTERMAN P, FREGUIA S, KELLER J, et al. The anode potential regulates bacterial activity in microbial fuel cells[J]. Applied Microbiology and Biotechnology, 2008, 78(3):409-418.
|
[19] |
潘彬, 孙丹, 叶遥立, 等. 微生物燃料电池中阴极长期运行的性能分析[J]. 化工学报, 2014, 65(9):3701-3706. PAN B, SUN D, YE Y L, et al. An analysis of cathode performance in long-term operation of microbial fuel cells[J]. CIESC Journal, 2014, 65(9):3701-3706.
|
[20] |
叶遥立, 郭剑, 潘彬, 等. 阳极双电层电容对微生物燃料电池性能的影响[J]. 化工学报, 2015, 66(2):294-299. YE Y L, GUO J, PAN B, et al. Effect of anode double-layered capacitance on performance of microbial fuel cell[J]. CIESC Journal, 2015, 66(2):294-299.
|
[21] |
FRICKE K, HARNISCH F, SCHRODER U. On the use of cylic voltammetry for the study of anodic electron transfer in microbial fuel cells[J]. Energy and Environmental Science, 2008, 1(1):144-147.
|
[22] |
曹效鑫, 范明志, 梁鹏, 等. 阳极电势对Geobacter sulfurreducens产电性能的影响[J]. 高等学校化学学报, 2009, (30):983-987. CAO X X, FAN M Z, LIANG P, et al. Effect of anode potential on the electricity generation performance of Geobacter sulfurreducens[J]. Chemical Research in Chinese Universities, 2009, (30):983-987.
|
[23] |
ISHⅡ S, WATANABE K, YABUKI S, et al. Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell[J]. Applied Environmental Microbiology, 2008, 74(23):7348-7355.
|
[24] |
刘春梅, 李俊, 朱恂, 等. 阳极材料及结构对微生物燃料电池性能的影响[J]. 工程热物理学报, 2013, 34(6):1127-1130. LIU C M, LI J, ZHU X, et al. The effects of anode materials and configurations on the performance of microbial fuel cells[J]. Journal of Engineering Thermophysics, 2013, 34(6):1127-1130.
|
[25] |
黄霞, 范明志, 梁鹏, 等. 微生物燃料电池阳极特性对产电性能的影响[J]. 中国给水排水, 2007, 23(3):8-13. HUANG X, FAN M Z, LIANG P, et al. Influence of anodic characters of microbial fuel cells on power generation performance[J]. China Water & Wastewater, 2007, 23(3):8-13.
|
[26] |
LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology, 2004, 38(14):4040-4046.
|
[27] |
BOND D R, LOVLEY D R. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Applied and Environmental Microbiology, 2003, 69(3):1548-1555.
|
[28] |
STOLL Z A, MA Z, TRIVEDI C, et al. Sacrificing power for more cost-effective treatment:a techno-economic approach for engineering microbial fuel cells[J]. Chemosphere, 2016, (161):10-18.
|
[29] |
JIANG D, LI B, JIA W, et al. Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells[J]. Applied Biochemistry and Biotechnology, 2009, 160(1):182-196.
|
[30] |
YATES M D, KIELY P D, CALL D F, et al. Convergent development of anodic bacterial communities in microbial fuel cells[J]. The ISME Journal, 2012, 6(11):2002-2013.
|