[1] |
VALLEE A, HUMBLOT V, PRADIER C M. Peptide interactions with metal and oxide surfaces[J]. Accounts of Chemical Research, 2010, 43(10):1297-1306.
|
[2] |
COSTA D, GARRAIN P A, BAADEN M. Understanding small biomolecule-biomaterial interactions:a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces[J]. Journal of Biomedical Materials Research Part A, 2013, 101A(4):1210-1222.
|
[3] |
OZBOYACI M, KOKH D B, CORNI S, et al. Modeling and simulation of protein-surface interactions:achievements and challenges[J]. Quarterly Reviews of Biophysics, 2016, 49:1-45.
|
[4] |
WANG X, HERTING G, WALLINDER I O, et al. Adsorption of lysozyme on silver and its influence on silver release[J]. Langmuir, 2014, 30:13877-13889.
|
[5] |
KIM G H, KIM I S, PARK S W, et al. Evaluation of osteoblast-like cell viability and differentiation on the Gly-Arg-Gly-Asp-Ser peptide immobilized titanium dioxide nanotube via chemical grafting[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(2):1396-1399.
|
[6] |
CHENG K, WANG T T, YU M L, et al. Effects of RGD immobilization on light-induced cell sheet detachment from TiO2 nanodots films[J]. Materials Science & Engineering C-Materials for Biological Applications, 2016, 63:240-246.
|
[7] |
ELMENGAARD B, BECHTOLD J E, SOBALLE K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants[J]. Biomaterials, 2005, 26(17):3521-3526.
|
[8] |
FERRIS D M, MOODIE G D, DIMOND P M, et al. RGD-coated titanium implants stimulate increased bone formation in vivo[J]. Biomaterials, 1999, 20:2323-2331.
|
[9] |
REZANIA A, HEALY K E. The effect of peptide surface density on mineralization of matrix deposited by osteogenic cells[J]. Journal of Biomedical Materials Research, 2000, 52(4):595-600.
|
[10] |
QUIRK R A, CHAN W C, DAVIES M C, et al. Poly (L-lysine)-GRGDS as a biomimetic surface modifier for poly (lactic acid)[J]. Biomaterials, 2001, 22(8):865-872.
|
[11] |
VERRIER S, PALLU S, BAREILLE R, et al. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process[J]. Biomaterials, 2002, 23(2):585-596.
|
[12] |
SKELTON A A, LIANG T, WALSH T R. Interplay of sequence, conformation and binding at the titania-peptide interface as mediated by water[J]. ACS Applied Materials & Interfaces, 2009, 1(7):1482-1491.
|
[13] |
MONTI S, WALSH T R. Free energy calculations of the adsorption of amino acid analogues at the aqueous titania interface[J]. The Journal of Physical Chemistry C, 2010, 114(50):22197-22206.
|
[14] |
WU C Y, CHEN M J, GUO C Q, et al. Peptide-TiO2 interaction in aqueous solution:conformational dynamics of RGD using different water models[J]. The Journal of Physical Chemistry B, 2010, 114(13):4692-4701.
|
[15] |
WU C Y, SKELTON A A, CHEN M J, et al. Modeling the interaction between integrin-binding peptide (RGD) and rutile surface:the effect of cation mediation on Asp adsorption[J]. Langmuir, 2012, 28(5):2799-2811.
|
[16] |
WU C Y, CHEN M J, SKELTON A A, et al. Adsorption of arginine-glycine-aspartate tripeptide onto negatively charged rutile (110) mediated by cations:the effect of surface hydroxylation[J]. ACS Applied Materials & Interfaces, 2013, 5(7):2567-2579.
|
[17] |
DIEBOLD U. The surface science of titanium dioxide[J]. Surface Science Reports, 2003, 48(5/6/7/8):53-229.
|
[18] |
RODDICK-LANZILOTTA A D, MCQUILLAN A J. An in situ infrared spectroscopic study of glutamic acid and of aspartic acid adsorbed on TiO2:implications for the biocompatibility of titanium[J]. Journal of Colloid and Interface Science, 2000, 227:48-54.
|
[19] |
DICKINSON C D, VEERAPANDIAN B, DAI X P, et al. Crystal structure of the tenth type Ⅲ cell adhesion module of human fibronectin[J]. Journal of Molecular Biology, 1994, 236:1079-1092.
|
[20] |
HUGENSCHMIDT M B, GAMBLE L, CAMPBELL C T. The interaction of H2O with a TiO2(110) surface[J]. Surface Science, 1994, 302(3):329-340.
|
[21] |
BENKOULA S, SUBLEMONTIER O, PATANEN M, et al. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies:bulk materials vs. isolated nanoparticles[J]. Scientific Reports, 2015, 5, Article number:15088.
|
[22] |
BRINKLEY D, DIETRICH M, ENGEL T, et al. A modulated molecular beam study of the extent of H2O dissociation on TiO2(110)[J]. Surface Science, 1998, 395(2/3):292-306.
|
[23] |
WESOLOWSKI D J, SOFO J O, BANDURA A V, et al. Comment on "structure and dynamics of liquid water on rutile TiO2(110)"[J]. Physical Review B, 2012, 85(16):3603-3612.
|
[24] |
SHI H, LIU Y C, ZHAO Z J, et al. Reactivity of the defective rutile TiO2(110) surfaces with two bridging-oxygen vacancies:water molecule as a probe[J]. The Journal of Physical Chemistry C, 2014, 118(35):20257-20263.
|
[25] |
LAMMPS Molecular Dynamics Simulator Home Page[EB/OL]. http://lammps.sandia.gov.
|
[26] |
MATSUI M, AKAOGI M. Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2[J]. Molecular Simulation, 1991, 6:239-244.
|
[27] |
CORNELL W D, CIEPLAK P, BAYLY C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of the American Chemical Society, 1995, 117:5179-5197.
|
[28] |
BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. Journal of Physical Chemistry, 1987, 91(24):6269-6271.
|
[29] |
CARRAVETTA V, MONTI S. Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2006, 110:6160-6169.
|
[30] |
RYCKAERT J P, CICCOTTI G, BERENDSEN H J. Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of nalkanes[J]. Journal of Computational Physics, 1977, 23(3):327-341.
|
[31] |
KIM D W, ENOMOTO N, NAKAGAWA Z, et al. Molecular dynamic simulation in titanium dioxide polymorphs:rutile, brookite, and anatase[J]. Journal of the American Ceramic Society, 1996, 79(4):1095-1099.
|
[32] |
SANO K I, SHIBA K. A hexapeptide motif that electrostatically binds to the surface of titanium[J]. Journal of the American Chemical Society, 2003, 125(47):14234-14235.
|