CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 1-13.DOI: 10.11949/0438-1157.20201047
• Reviews and monographs • Previous Articles Next Articles
YANG Yuxin1(),ZHAO Xueze1,FAN Jiangli1,2(),PENG Xiaojun1
Received:
2020-07-29
Revised:
2020-08-18
Online:
2021-01-05
Published:
2021-01-05
Contact:
FAN Jiangli
通讯作者:
樊江莉
作者简介:
杨宇鑫(1999—),女,硕士研究生,基金资助:
CLC Number:
YANG Yuxin, ZHAO Xueze, FAN Jiangli, PENG Xiaojun. Research progress on improving the tumor-targeting of photosensitizers in photodynamic therapy[J]. CIESC Journal, 2021, 72(1): 1-13.
杨宇鑫, 赵学泽, 樊江莉, 彭孝军. 光动力治疗中提高光敏剂靶向性的研究进展[J]. 化工学报, 2021, 72(1): 1-13.
1 | Zhang Y, Wang F, Liu C, et al. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy[J]. ACS Nano, 2018, 12(1): 651-661. |
2 | Celli J P, Spring B Q, Rizvi I, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization[J]. Chemical Reviews, 2010, 110(5): 2795-2838. |
3 | Lovell J F, Liu T W, Chen J, et al. Activatable photosensitizers for imaging and therapy[J]. Chemical Reviews, 2010, 110(5): 2839-2857. |
4 | Agostinis P, Berg K, Cengel K A, et al. Photodynamic therapy of cancer: an update[J]. A Cancer Journal for Clinicians, 2011, 61(4): 250-281. |
5 | Fan W P, Huang P, Chen X Y, et al. Overcoming the Achilles' heel of photodynamic therapy[J]. Chemical Society Reviews, 2016, 45(23): 6488-6519. |
6 | Rerners J, Agostinis P, Berg K, et al. Assessing autophagy in the context of photodynamic therapy[J]. Autophagy,2010,6(1): 7-18. |
7 | 郑秉得, 赵园园, 李洪才, 等. 可激活抗癌光敏剂[J]. 化学进展, 2018, 30(9): 1403-1414. |
Zheng B D, Zhao Y Y, Li H C, et al. Activatable photodynamic anticancer photosensitizers[J]. Progress in Chemistry, 2018, 30(9): 1403-1414. | |
8 | Dolmans D E, Fukumura D, Jain R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 2003, 3: 380-387. |
9 | Szacilowski K, Macyk W, Drzewiecka-Matuszak A, et al. Bioinorganic photochemistry: frontiers and mechanism[J]. Chemical Reviews, 2005, 105: 2647-2694. |
10 | Dichiara M, Prezzavento O, Marrazzo A, et al. Recent advances in drug discovery of phototherapeutic non-porphyrinic anticancer agents[J]. European Journal of Medicinal Chemistry, 2017, 142: 459-485. |
11 | Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy-mechanisms, photosensitizers and combinations[J]. Biomedicine & Pharmacotherapy, 2018, 106: 1098-1107. |
12 | Maruani A, Savoie H, Bryden F, et al. Site-selective multi-porphyrin attachment enables the formation of a next-generation antibody-based photodynamic therapeutic[J]. Chemical Communications, 2015, 51: 15304. |
13 | Henderson B W, Dougherty T J. How does photodynamic therapy work?[J]. Photochemistry and Photobiology, 1992, 55: 145-157. |
14 | Novohradsky V, Rovira A, Hally C, et al. Towards novel photodynamic anticancer agents generating superoxide anion radicals: a cyclometalated IrIII complex conjugated to a far-red emitting coumarin[J]. Angewandte Chemie International Edition, 2019, 58:6311-6315. |
15 | Dougherty T J, Potter W R, Weishaupt K R. The structure of the active component of hematoporphyrin derivative[J]. Porphyrins in Tumor Phototherapy, 1984, 170: 301. |
16 | Bellnier D, Dougherty T. A preliminary pharmacokinetic study of intravenous Photofrin® in patients[J].Journal of Clinical Laser Medicine and Surgery, 1996, 14: 311. |
17 | Moreira L M, dos Santos F V, Lyon J P, et al. ChemInform abstract: photodynamic therapy: porphyrins and phthalocyanines as photosensitizers[J]. Australian Journal of Chemistry, 2008, 61: 741. |
18 | 汪凌云, 曹德榕. 卟啉类光敏剂在光动力治疗中的应用研究[J]. 有机化学, 2012, 32(12): 2248-2264. |
Wang L Y, Cao D R. Research advances of porphyrin photosensitizers in photodynamic therapy[J]. China Journal of Organic Chemistry, 2012, 32(12): 2248-2264. | |
19 | 李美容, 蔡晓庆, 朱易峰, 等. 5-氟尿嘧啶光敏性偶联衍生物的合成、表征及抗癌活性研究[J]. 化学学报, 2011, 69: 425-430. |
Li M R, Cai X Q, Zhu Y F, et al. Synthesis and biological evaluation of novel coupling derivatives of photosensitizer and 5-fluorouracil as antineoplastic agents[J]. Acta Chimica Sinica, 2011, 69: 425-430. | |
20 | Obaid G, Broekgaarden M, Bulin A L, et al. Photonanomedicine: a convergence of photodynamic therapy and nanotechnology[J]. Nanoscale, 2016, 8(25): 12471-12503. |
21 | Liu K, Xing R, Zou Q, et al. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy[J]. Angewandte Chemie International Edition, 2016, 55: 3036. |
22 | 李明乐, 彭孝军. 靶标性酞菁类光敏剂的光动力疗法研究进展[J]. 化学学报, 2016, 74: 959-968. |
Li M L, Peng X J. Research progress on the phthalocyanine based targeting photosensitizers in photodynamic therapy[J]. Acta Chimica Sinica, 2016, 74: 959-968. | |
23 | Zhang F L, Huang Q, Zheng K, et al. A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc (Ⅱ) phthalocyanine and small molecule target-based anticancer drug erlotinib[J].Chemical Communication, 2013, 49: 9570. |
24 | Jung H S, Han J, Shi H, et al. Overcoming the limits of hypoxia in photodynamic therapy: a carbonic anhydrase IX-targeted approach[J]. Journal of the American Chemical Society, 2017, 139(22): 7595-7602. |
25 | Lock F E, Mcdonald P C, Lou Y, et al. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche[J]. Oncogene, 2013, 32(44): 5210-5219. |
26 | Supuran C T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators[J]. Nature Reviews Drug Discovery, 2008, 7(2): 168-181. |
27 | Shimamura T, Perera S A, Foley K P, et al. Ganetespib (STA-9090), a nongeldanamycin Hsp90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer[J]. Clinical Cancer Research, 2012, 18(18): 4973-4985. |
28 | Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors[J]. Nature, 2003, 425(6956): 407-410. |
29 | Whitesell L, Lindquist S L. HSP90 and the chaperoning of cancer[J]. Nature Reviews Cancer, 2005, 5: 761-772. |
30 | Huang L F, Wei G F, Sun X Q, et al. A tumor-targeted Ganetespib-zinc phthalocyanine conjugate for synergistic chemophotodynamic therapy[J]. European Journal of Medicinal Chemistry, 2018, 151: 294-303. |
31 | Zhao X Z, Long S R, Li M L, et al. Oxygen-dependent regulation of excited-state deactivation process of rational photosensitizer for smart phototherapy[J]. Journal of the American Chemical Society, 2020, 142: 1510-1517. |
32 | Sharma A, Arambula J F, Seyoung Koo, et al. Hypoxia-targeted drug delivery[J]. Chemical Society Review, 2019, 48(3): 771-813. |
33 | Wang H, Chao Y, Liu J, et al. Photosensitizer-crosslinked in-situ polymerization on catalase for tumor hypoxia modulation & enhanced photodynamic therapy[J]. Biomaterials, 2018, 181: 310-317. |
34 | Daurio N A, Tuttle S W, Worth A J, et al. AMPK activation and metabolic reprogramming by tamoxifen through estrogen receptor-independent mechanisms suggests new uses for this therapeutic modality in cancer treatment[J]. Cancer Research, 2016, 76: 3295. |
35 | Li M L, Shao Y J, Kim J H, et al. Unimolecular photodynamic O2-economizer to overcome hypoxia resistance in phototherapeutics[J]. Journal of the American Chemical Society, 2020, 142: 5380-5388. |
36 | Maiti S, Park N, Han J H, et al. Gemcitabine-Coumarin-Biotin Conjugates: a target specific theranostic anti-cancer prodrug[J]. Journal of the American Chemical Society, 2013, 135(11): 4567-4572. |
37 | Li M L, Xia J, Tian R S, et al. Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors[J]. Journal of the American Chemical Society, 2018, 140: 14851-14859. |
38 | Gebremedhin K H, Li M L, Gao F L, et al. Benzo[a]phenoselenazine-based NIR photosensitizer for tumor-targeting photodynamic therapy via lysosomal-disruption pathway[J]. Dyes and Pigments, 2019, 170: 107617. |
39 | Zhang Q, Cai Y, Li Q Y, et al. Targeted delivery of a mannose-conjugated BODIPY photosensitizer by nanomicelles for photodynamic breast cancer therapy[J]. Chemistry-A European Journal, 2017, 23: 14307-14315. |
40 | 康垚, 王素真, 樊江莉, 等. 无机纳米药物载体在肿瘤诊疗中的研究进展[J]. 化工学报, 2018, 69(1): 128-140. |
Kang Y, Wang S Z, Fan J L, et al. Progress in inorganic nanomedicine carriers for tumor diagnosis and treatments[J]. CIESC Journal, 2018, 69(1): 128-140. | |
41 | Ranyuk E, Cauchon N, Klarskov K, et al. Phthalocyanine-peptide conjugates: receptor-targeting bifunctional agents for imaging and photodynamic therapy[J]. Journal of Medicinal Chemistry, 2013, 56: 1520-1534. |
42 | Liu Z W, Shi W B, Hong G B, et al. A dual-targeted theranostic photosensitizer based on a TADF fluorescein derivative[J]. Journal of Controlled Release, 2019, 310: 1-10. |
43 | Li M L, Xiong T, Du J J, et al. Superoxide radical photogenerator with amplification effect: surmounting the Achilles' heels of photodynamic oncotherapy[J]. Journal of the American Chemical Society, 2019, 141: 2695-2702. |
44 | Hyun H, Park M H, Owens E A, et al. Structure-inherent targeting of NIR fluorophores for parathyroid and thyroid gland imaging[J]. Nature Medicine, 2015, 21(2): 192-197. |
45 | Li M L, Long S R, Kang Y, et al. De novo design of phototheranostic sensitizers based on structure inherent targeting for enhanced cancer ablation[J]. Journal of the American Chemical Society, 2018, 140: 15820-15826. |
46 | Wong R C H, Lo P C, Ng D K P. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers[J]. Coordination Chemistry Reviews, 2019, 379(SI): 30-46. |
47 | Li X S, Kolemen S, Yoon J, et al. Activatable photosensitizers: agents for selective photodynamic therapy[J]. Advanced Functional Materials, 2017, 27: 1604053. |
48 | Umezawa K, Yoshida M, Kamiya M, et al. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics[J]. Nature Chemistry, 2017, 9(3): 279-286. |
49 | Liu H W, Chen L L, Xu C Y, et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging[J]. Chemical Society Reviews, 2018, 47: 7140-7180. |
50 | Majumdar P, Nomula R, Zhao J. Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy[J]. Journal of Materials Chemistry C, 2014, 2(30): 5982-5997. |
51 | Wu W T, Shao X D, Zhao J Z, et al. Controllable photodynamic therapy implemented by regulating singlet oxygen efficiency[J]. Advanced Science, 2017, 4: 1700113. |
52 | Yan S F, Chen J C, Cai L Z, et al. Phthalocyanine-based photosensitizer with tumor-pH-responsive properties for cancer theranostics[J]. Journal of Materials Chemistry B, 2018, 6: 6080-6088. |
53 | Sun J, Du K, Diao J J, et al. GSH and H2O2 co-activatable mitochondria-targeted photodynamic therapy under normoxia and hypoxia[J]. Angewandte Chemie International Edition, 2020, 59: 2-9. |
54 | Zielonka J, Joseph J, Sikora A, et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications[J]. Chemical Reviews, 2017, 117:10043-10120. |
55 | Lv W, Zhang Z, Zhang K Y, et al. A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia[J]. Angewandte Chemie International Edition, 2016, 55: 9947-9951. |
56 | Radunz S, Wedepohl S, Rohr M, et al. pH-Activatable singlet oxygen-generating boron-dipyrromethenes (BODIPYs) for photodynamic therapy and bioimaging[J]. Journal of Medicinal Chemistry, 2020, 63(4): 1699-1708. |
57 | You Y, Gibson S L, Hilf R, et al. Water soluble, core-modified porphyrins (3): Synthesis, photophysical properties, and in vitro studies of photosensitization, uptake, and localization with carboxylic acid-substituted derivatives[J]. Journal of Medical Chemistry, 2003, 46(17): 3734-3747. |
58 | Turan I S, Cakmak F P, Yildirim D C, et al. Near-IR absorbing BODIPY derivatives as glutathione-activated photosensitizers for selective photodynamic action[J]. Chemistry-A European Journal, 2014, 20: 16088-16092. |
59 | Wang X, Li P, Ding Q, et al. Observation of acetylcholinesterase in stress-induced depression phenotypes by two-photon fluorescence imaging in the mouse brain[J]. Journal of the American Chemical Society, 2019, 141(5): 2061-2068. |
60 | Wu X, Sun X R, Guo Z Q, et al. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug[J]. Journal of the American Chemical Society, 2014, 136(9): 3579-3588. |
61 | Gu K Z, Xu Y S, Li H, et al. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe[J]. Journal of the American Chemical Society, 2016, 138(16): 5334-5340. |
62 | Sun W, Fan J L, Hu C, et al. A two-photon fluorescent probe with near-infrared emission for hydrogen sulfide imaging in biosystems[J]. Chemical Communications, 2013, 49(37): 3890-3892. |
63 | Liu H W, Hu X X, Li K, et al. A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy[J]. Chemical Science, 2017, 8: 7689-7695. |
64 | Xu F, Li H D, He H Y, et al. Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy[J]. Chemical Science, 2019, 10: 10586-10594. |
65 | Cao J F, Sun W, Fan J L. Insights into bishemicyanines with long emission wavelengths and high sensitivity in viscous environments[J]. Chinese Chemical Letters, 2020, 31(6): 1402-1405. |
66 | Zhou X, Li H D, Shi C, et al. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging[J]. Biomaterials, 2020, 253: 120089. |
67 | Zhai W H, Zhang Y K, Liu M, et al. Universal scaffold for an activatable photosensitizer with completely inhibited photosensitivity[J]. Angewandte Chemie International Edition, 2019, 131: 16754-16762. |
68 | Chiba M, Kamiya M, Tsuda-Sakurai K, et al. Activatable photosensitizer for targeted ablation of lacZ-positive cells with single-cell resolution[J]. ACS Central Science, 2019, 5: 1676-1681. |
69 | Lv W J, Chi S Y, Feng W Q, et al. Development of a red absorbing Se-rhodamine photosensitizer and its application for bio-orthogonally activatable photodynamic therapy[J]. Chemical Communication, 2019, 55: 7037. |
70 | Azoulay M, Tuffin G, Sallem W, et al. A new drug-release method using the staudinger ligation[J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16(12): 3147-3149. |
71 | Brakel R V, Vulders R C, Bokdam R J, et al. A doxorubicin prodrug activated by the staudinger reaction[J]. Bioconjugate Chemistry, 2008, 19(3): 714-718. |
72 | Vugts D J, Vervoort A, Walsum M S, et al. Synthesis of phosphine and antibody-azide probes for in vivo staudinger ligation in a pretargeted imaging and therapy approach[J]. Bioconjugate Chemistry, 2011, 22(10): 2072-2081. |
73 | Ichikawa Y, Kamiya M, Obata F, et al. Selective ablation of β-galactosidase-expressing cells with a rationally designed activatable photosensitizer[J]. Angewandte Chemie International Edition, 2014, 53: 6772-6775. |
74 | Chiba M, Ichikawa Y, Kamiya M, et al. An activatable photosensitizer targeted to γ-glutamyltranspeptidase[J]. Angewandte Chemie International Edition, 2017, 56: 10418-10422. |
[1] | YU Fuqiang, DU Jianjun, LU Yang, MA He, FAN Jiangli, SUN Wen, LONG Saran, PENG Xiaojun. Fabrication of serum albumin-copper phthalocyanine nanoparticles for mitochondria-targeted phototherapy [J]. CIESC Journal, 2021, 72(1): 597-608. |
[2] | Yuquan ZHANG, Shuai GUO, Yuhua WENG, Yongfei YANG, Yuanyu HUANG. Progresses of aggregation-induced emission materials in drug delivery and disease treatment [J]. CIESC Journal, 2020, 71(9): 4102-4111. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1358
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 935
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||