CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4102-4111.DOI: 10.11949/0438-1157.20200569
• Reviews and monographs • Previous Articles Next Articles
Yuquan ZHANG(),Shuai GUO,Yuhua WENG,Yongfei YANG,Yuanyu HUANG()
Received:
2020-05-11
Revised:
2020-06-24
Online:
2020-09-05
Published:
2020-09-05
Contact:
Yuanyu HUANG
通讯作者:
黄渊余
作者简介:
张玉权(1997—),男,硕士研究生,基金资助:
CLC Number:
Yuquan ZHANG, Shuai GUO, Yuhua WENG, Yongfei YANG, Yuanyu HUANG. Progresses of aggregation-induced emission materials in drug delivery and disease treatment[J]. CIESC Journal, 2020, 71(9): 4102-4111.
张玉权, 郭帅, 翁郁华, 杨勇飞, 黄渊余. 聚集诱导发光材料在药物递送与疾病治疗中的研究进展[J]. 化工学报, 2020, 71(9): 4102-4111.
Add to citation manager EndNote|Ris|BibTeX
1 | Béduneau A, Saulnier P, Benoit J P. Active targeting of brain tumors using nanocarriers[J]. Biomaterials, 2007, 28(33): 4947-4967. |
2 | 康垚, 王素真, 樊江莉,等. 无机纳米药物载体在肿瘤诊疗中的研究进展[J]. 化工学报, 2018, 69(1): 128-140. |
Kang Y, Wang S Z, Fan J L, et al. Progress in inorganic nanomedicine carriers for tumor diagnosis and treatments[J]. CIESC Journal, 2018, 69(1): 128-140. | |
3 | 王宁, 刘硕, 杨雷, 等. 2018全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2019, 5(1): 87-97. |
Wang N, Liu S, Yang L, et al. Interpretation on the report of global cancer statistics 2018[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2019, 5(1): 87-97. | |
4 | Chen H M, Zhang W Z, Zhu G Z, et al. Rethinking cancer nanotheranostics[J]. Nat. Rev. Mater., 2017, 2(7): 17024. |
5 | Cortes J, Perez-García J M, Llombart-Cussac A, et al. Enhancing global access to cancer medicines[J]. CA: A Cancer Journal for Clinicians, 2020, 70(2): 105-124. |
6 | Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424. |
7 | Aberle D R, Adams A M, Berg C D, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening[J]. N. Engl. J. Med., 2011, 365(5): 395-409. |
8 | Murphy G, Haider M, Ghai S, et al. The expanding role of MRI in prostate cancer[J]. American Journal of Roentgenology, 2013, 201(6): 1229-1238. |
9 | Barrington S F, Kluge R. FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas[J]. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44: 97-110. |
10 | 张世玲, 彭孝军. 氟离子荧光探针的研究进展[J]. 化工学报, 2016, 67(1): 191-201. |
Zhang S L, Peng X J. Research progress on fluorescent probes for fluoride ions[J]. CIESC Journal, 2016, 67(1): 191-201. | |
11 | Jiang Y Y, Pu K Y. Advanced photoacoustic imaging applications of near-infrared absorbing organic nanoparticles[J]. Small, 2017, 13(30): 1700710. |
12 | 杨志广, 江鑫梅, 程春艳, 等. 线粒体靶向型离子荧光探针的研究进展[J]. 化工学报, 2019, 70(6): 2060-2074. |
Yang Z G, Jiang X M, Cheng C Y, et al. Research progress of mitochondria-targeted fluorescent probes for ions[J]. CIESC Journal, 2019, 70(6): 2060-2074. | |
13 | Ding D, Li K, Liu B, et al. Bioprobes based on AIE fluorogens[J]. Acc. Chem. Res., 2013, 46(11): 2441-2453. |
14 | 赵秋丽, 杨庆浩. 传统生色团的改造:从聚集导致荧光猝灭到聚集诱导发光[J]. 功能材料, 2015, 46(14): 14001-14011. |
Zhao Q L, Yang Q H. Transforming the behavior of conventional chromophores from aggregation-caused quenching to aggregation-induced emission[J]. Journal of Functional Materials, 2015, 46(14): 14001-14011. | |
15 | Zhang J, Wang Q, Guo Z Q, et al. High-fidelity trapping of spatial-temporal mitochondria with rational design of aggregation-induced emission probes[J]. Adv. Funct. Mater., 2019, 29(16): 1808153-1808164. |
16 | Gu X G, Kwok R T K, Lam J W Y, et al. AIEgens for biological process monitoring and disease theranostics[J]. Biomaterials, 2017, 146: 115-135. |
17 | Luo J, Xie Z, Lam J W, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem. Commun., 2001, (18): 1740-1741. |
18 | Shi L, Li K, Li L L, et al. Novel easily available purine-based AIEgens with colour tunability and applications in lipid droplet imaging[J]. Chem. Sci., 2018, 9(48): 8969-8974. |
19 | Gao M, Su H, Lin G, et al. Targeted imaging of EGFR overexpressed cancer cells by brightly fluorescent nanoparticles conjugated with cetuximab[J]. Nanoscale, 2016, 8(32): 15027-15032. |
20 | Wang Y J, Shi Y, Wang Z, et al. A red to near-IR fluorogen: aggregation-induced emission, large Stokes shift, high solid efficiency and application in cell-imaging[J]. Chemistry, 2016, 22(28): 9784-9791. |
21 | Hong Y, Lam J W, Tang B Z. Aggregation-induced emission[J]. Chem. Soc. Rev., 2011, 40(11): 5361-5388. |
22 | Mei J, Hong Y, Lam J W, et al. Aggregation-induced emission: the whole is more brilliant than the parts[J]. Adv. Mater., 2014, 26(31): 5429-5479. |
23 | Dai Y D, Sun X Y, Sun W, et al. H2O2-responsive polymeric micelles with a benzil moiety for efficient DOX delivery and AIE imaging[J]. Org. Biomol. Chem., 2019, 17(22): 5570-5577. |
24 | Zhang X Y, Zhang X Q, Wang S Q, et al. Facile incorporation of aggregation-induced emission materials into mesoporous silica nanoparticles for intracellular imaging and cancer therapy[J]. ACS Appl. Mater. Interfaces, 2013, 5(6): 1943-1947. |
25 | Li J, Wang J, Li H, et al. Supramolecular materials based on AIE luminogens (AIEgens): construction and applications[J]. Chem. Soc. Rev., 2020, 49(4): 1144-1172. |
26 | Xue X, Zhao Y, Dai L, et al. Spatiotemporal drug release visualized through a drug delivery system with tunable aggregation-induced emission[J]. Adv. Mater., 2014, 26(5): 712-717. |
27 | Gao X Y, Cao J, Song Y N, et al. A unimolecular theranostic system with H2O2-specific response and AIE-activity for doxorubicin releasing and real-time tracking in living cells[J]. RSC Adv., 2018, 8(20): 10975-10979. |
28 | Kim K Y, Jin H, Park J, et al. Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery[J]. Nano Res., 2018, 11(2): 1082-1098. |
29 | Li Q L, Wang D, Cui Y Z, et al. AIEgen-functionalized mesoporous silica gated by cyclodextrin-modified CuS for cell imaging and chemo-photothermal cancer therapy[J]. ACS Appl. Mater. Interfaces, 2018, 10(15): 12155-12163. |
30 | Jia X B, Zhang Y H, Zou Y, et al. Dual intratumoral redox/enzyme-responsive NO-releasing nanomedicine for the specific, high-efficacy, and low-toxic cancer therapy[J]. Adv. Mater., 2018, 30(30): 1704490-1704499. |
31 | Li D D, Yu J H. AIEgens-functionalized inorganic-organic hybrid materials: fabrications and applications[J]. Small, 2016, 12(47): 6478-6494. |
32 | Li D, Yu J, Xu R. Mesoporous silica functionalized with an AIE luminogen for drug delivery[J]. Chem. Commun., 2011, 47(39): 11077-11079. |
33 | Fan Z Y, Li D D, Yu X, et al. AIE Luminogen-functionalized hollow mesoporous silica nanospheres for drug delivery and cell imaging[J]. Chemistry, 2016, 22(11): 3681-3685. |
34 | Weng Y H, Xiao H H, Zhang M J, et al. RNAi therapeutic and its innovative biotechnological evolution[J]. Biotechnol. Adv., 2019, 37(5): 801-825. |
35 | 黄渊余. 首例RNA干扰药物问世及该领域技术演化历程[J]. 生物化学与生物物理进展, 2019, 46(3): 313-322. |
Huang Y Y. Approval of the first-ever RNAi therapeutics and its technological development history[J]. Progress in Biochemistry and Biophysics, 2019, 46(3): 313-322. | |
36 | He X W, Zhao Z, Xiong L H, et al. Redox-active AIEgen-derived plasmonic and fluorescent core@shell nanoparticles for multimodality bioimaging[J]. J. Am. Chem. Soc., 2018, 140(22): 6904-6911. |
37 | He X W, Yin F, Wang D Y, et al. AIE featured inorganic-organic core@shell nanoparticles for high-efficiency siRNA delivery and real-time monitoring[J]. Nano Lett., 2019, 19(4): 2272-2279. |
38 | Hu R R, Kang Y, Tang B Z. Recent advances in AIE polymers[J]. Polym. J., 2016, 48(4): 359-370. |
39 | Zhang X Y, Wang K, Liu M Y, et al. Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives[J]. Nanoscale, 2015, 7(27): 11486-11508. |
40 | Zhuang W H, Xu Y Y, Li G C, et al. Redox and pH dual-responsive polymeric micelles with aggregation-induced emission feature for cellular imaging and chemotherapy[J]. ACS Appl. Mater. Interfaces, 2018, 10(22): 18489-18498. |
41 | Wang Z Y, Wang C, Gan Q, et al. Donor-acceptor-type conjugated polymer-based multicolored drug carriers with tunable aggregation-induced emission behavior for self-illuminating cancer therapy[J]. ACS Appl. Mater. Interfaces, 2019, 11(45): 41853-41861. |
42 | Lee Y, Ishii T, Cabral H, et al. Charge-conversional polyionic complex micelles-efficient nanocarriers for protein delivery into cytoplasm[J]. Angew. Chem. Int. Ed., 2009, 48(29): 5309-5312. |
43 | Liao J H, Song Y J, Liu C, et al. Dual-drug delivery based charge-conversional polymeric micelles for enhanced cellular uptake and combination therapy[J]. Polym. Chem., 2019, 10(43): 5879-5893. |
44 | Xiao H J, Guo Y P, Liu H M, et al. Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy[J]. Biomaterials, 2020, 232: 119701-119714. |
45 | Yu T, Zhuang W H, Su X, et al. Dual-responsive micelles with aggregation-induced emission feature and two-photon aborsption for accurate drug delivery and bioimaging[J]. Bioconjugate Chem., 2019, 30(7): 2075-2087. |
46 | Wang S, Huang P, Chen X Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization[J]. Adv. Mater., 2016, 28(34): 7340-7364. |
47 | Hu J, Zhuang W H, Ma B X, et al. A two- photon fluorophore labeled multifunctional drug carrier for targeting cancer therapy, inflammation restraint and AIE active bioimaging[J]. J. Mater. Chem. B, 2019, 7(24): 3894-3908. |
48 | Wu P, Wang X F, Wang Z G, et al. Light-activatable prodrug and AIEgen copolymer nanoparticle for dual-drug monitoring and combination therapy[J]. ACS Appl. Mater. Interfaces, 2019, 11(20): 18691-18700. |
49 | Dong Z Z, Bi Y Z, Cui H R, et al. AIE supramolecular assembly with FRET effect for visualizing drug delivery[J]. ACS Appl. Mater. Interfaces, 2019, 11(27): 23840-23847. |
50 | Li B, He T, Shen X, et al. Fluorescent supramolecular polymers with aggregation induced emission properties[J]. Polym. Chem., 2019, 10(7): 796-818. |
51 | Yu G C, Zhao R, Wu D, et al. Pillar[5]arene-based amphiphilic supramolecular brush copolymer: fabrication, controllable self-assembly and application in self-imaging targeted drug delivery[J]. Polym. Chem., 2016, 7(40): 6178-6188. |
52 | Zhang C Q, Zhang T B, Jin S B, et al. Virus-inspired self-assembled nanofibers with aggregation-induced emission for highly efficient and visible gene delivery[J]. ACS Appl. Mater. Interfaces, 2017, 9(5): 4425-4432. |
53 | Zhang T B, Guo W S, Zhang C Q, et al. Transferrin-dressed virus-like ternary nanoparticles with aggregation-induced emission for targeted delivery and rapid cytosolic release of siRNA[J]. ACS Appl. Mater. Interfaces, 2017, 9(19): 16006-16014. |
54 | Wang H, Yu D, Fang J, et al. Renal-clearable porphyrinic metal-organic framework nanodots for enhanced photodynamic therapy[J]. ACS Nano, 2019, 13(8): 9206-9217. |
55 | Castano A P, Mroz P, Hamblin M R. Photodynamic therapy and anti-tumour immunity[J]. Nat. Rev. Cancer, 2006, 6(7): 535-545. |
56 | Lovell J F, Chen J, Jarvi M T, et al. FRET quenching of photosensitizer singlet oxygen generation[J]. J. Phys. Chem. B, 2009, 113(10): 3203-3211. |
57 | Mei J, Leung N L, Kwok R T, et al. Aggregation-induced emission: together We shine, united We soar![J]. Chem. Rev., 2015, 115(21): 11718-11940. |
58 | Zhuang W H, Yang L, Ma B X, et al. Multifunctional two-photon AIE luminogens for highly mitochondria-specific bioimaging and efficient photodynamic therapy[J]. ACS Appl. Mater. Interfaces, 2019, 11(23): 20715-20724. |
59 | Dai J, Li Y H, Long Z, et al. Efficient near-infrared photosensitizer with aggregation-induced emission for imaging-guided photodynamic therapy in multiple xenograft tumor models[J]. ACS Nano, 2020, 14(1): 854-866. |
60 | Zhou Z J, Song J B, Nie L M, et al. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy[J]. Chem. Soc. Rev., 2016, 45(23): 6597-6626. |
61 | Chen H C, Tian J W, He W J, et al. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J]. J. Am. Chem. Soc., 2015, 137(4): 1539-1547. |
62 | Cheng Y, Cheng H, Jiang C, et al. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy[J]. Nat. Commun., 2015, 6: 8785-8793. |
63 | Gao F L, Wu J, Gao H Q, et al. Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics[J]. Biomaterials, 2020, 230: 119635-119647. |
64 | Zhang L P, Li Y Y, Che W L, et al. AIE multinuclear Ir(III) complexes for biocompatible organic nanoparticles with highly enhanced photodynamic performance[J]. Adv. Sci., 2019, 6(5): 1802050-1802057. |
65 | Wang X D, Dai J, Wang X Y, et al. MnO2-DNAzyme-photosensitizer nanocomposite with AIE characteristic for cell imaging and photodynamic-gene therapy[J]. Talanta, 2019, 202: 591-599. |
66 | Jin G R, Feng G X, Qin W, et al. Multifunctional organic nanoparticles with aggregation-induced emission (AIE) characteristics for targeted photodynamic therapy and RNA interference therapy[J]. Chem. Commun., 2016, 52(13): 2752-2755. |
67 | Wang Y Z, Song Y J, Zhu G X, et al. Highly biocompatible BSA-MnO2 nanoparticles as an efficient near-infrared photothermal agent for cancer therapy[J]. Chin. Chem. Lett., 2018, 29(11): 1685-1688. |
68 | Doughty A C V, Hoover A R, Layton E, et al. Nanomaterial applications in photothermal therapy for cancer[J]. Materials, 2019, 12(5): 779-793. |
69 | Song X J, Chen Q, Liu Z. Recent advances in the development of organic photothermal nano-agents[J]. Nano Res., 2015, 8(2): 340-354. |
70 | Zhang H, Wang J, Hu M, et al. Photothermal-assisted surface-mediated gene delivery for enhancing transfection efficiency[J]. Biomater. Sci., 2019, 7(12): 5177-5186. |
71 | Yan H, Teh C, Sreejith S, et al. Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery in vivo[J]. Angew. Chem. Int. Ed., 2012, 51(33): 8373-8377. |
72 | Alifu N, Zebibula A, Qi J, et al. Single-molecular near-infrared-II theranostic systems: ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy[J]. ACS Nano, 2018, 12(11): 11282-11293. |
73 | Wang J, Xu M S, Wang K, et al. Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence imaging and photothermal therapy of cancer cells[J]. Colloids and Surfaces B: Biointerfaces, 2019, 174: 324-332. |
74 | Fan Z Y, Ren L, Zhang W J, et al. AIE luminogen-functionalised mesoporous silica nanoparticles as nanotheranostic agents for imaging guided synergetic chemo-/photothermal therapy[J]. Inorg. Chem. Front., 2017, 4(5): 833-839. |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[3] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[4] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[5] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[6] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[7] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[8] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[9] | Yulong HUANG, Fan LYU, Junjie QIU, Hua ZHANG, Pinjing HE. Physicochemical properties and VOCs molecular characteristics of liquid digestate from anaerobic digestion of putrescible waste [J]. CIESC Journal, 2023, 74(3): 1275-1285. |
[10] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[11] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[12] | Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468. |
[13] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[14] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[15] | Lin PENG, Mingxin NIU, Yu BAI, Kening SUN. Preparation of hollow sulfur spheres-MoS2/rGO composite and its application in lithium-sulfur batteries [J]. CIESC Journal, 2022, 73(8): 3688-3698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||