CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5800-5809.DOI: 10.11949/0438-1157.20210694
• Energy and environmental engineering • Previous Articles Next Articles
Cheng CHEN1(),Xin CHEN2,Feng XU3,Bin WU1,Yuanyuan LI2,Gui LU2()
Received:
2021-05-21
Revised:
2021-06-21
Online:
2021-11-12
Published:
2021-11-05
Contact:
Gui LU
通讯作者:
陆规
作者简介:
陈程(1987—),女,博士,高级工程师,基金资助:
CLC Number:
Cheng CHEN, Xin CHEN, Feng XU, Bin WU, Yuanyuan LI, Gui LU. Matter-energy-water coupling mechanism and optimization for zero discharge of desulfurization wastewater from coal-fired units[J]. CIESC Journal, 2021, 72(11): 5800-5809.
陈程, 陈鑫, 徐凤, 吴斌, 李元媛, 陆规. 燃煤机组脱硫废水零排放物料-能-水耦合机制及优化[J]. 化工学报, 2021, 72(11): 5800-5809.
Add to citation manager EndNote|Ris|BibTeX
指标 | 烟气温度/℃ | 给水 温度/℃ | |||||
---|---|---|---|---|---|---|---|
前屏 出口 | 后屏出口 | 高再出口 | 高过 出口 | 低再出口 | 省煤器出口 | ||
设计 | 1124.91 | 1020 | 900 | 785 | 515 | 296.04 | 280.4 |
模拟 | 1244 | 1137 | 964 | 683 | 512 | 296 | 260 |
误差 | 9.60% | 11.5% | 6.64% | 13.00% | 0.58% | 0 | 7.31% |
指标 | 温升/℃ | 总功率/ kW | |||||
#7、#8 | #6 | #5 | #1 | #2 | #3 | ||
设计 | 47 | 20 | 40 | 20 | 30 | 30 | 600000 |
模拟 | 57 | 20 | 39 | 20 | 30 | 33 | 604890 |
误差 | 21.30% | 0 | 2.50% | 0 | 0 | 10% | 0.81% |
Table 1 Validation of 600 MW power plant model
指标 | 烟气温度/℃ | 给水 温度/℃ | |||||
---|---|---|---|---|---|---|---|
前屏 出口 | 后屏出口 | 高再出口 | 高过 出口 | 低再出口 | 省煤器出口 | ||
设计 | 1124.91 | 1020 | 900 | 785 | 515 | 296.04 | 280.4 |
模拟 | 1244 | 1137 | 964 | 683 | 512 | 296 | 260 |
误差 | 9.60% | 11.5% | 6.64% | 13.00% | 0.58% | 0 | 7.31% |
指标 | 温升/℃ | 总功率/ kW | |||||
#7、#8 | #6 | #5 | #1 | #2 | #3 | ||
设计 | 47 | 20 | 40 | 20 | 30 | 30 | 600000 |
模拟 | 57 | 20 | 39 | 20 | 30 | 33 | 604890 |
误差 | 21.30% | 0 | 2.50% | 0 | 0 | 10% | 0.81% |
物质名称 | 单位 | 喷入前脱硫废水 | 喷入后脱硫废水 |
---|---|---|---|
water | kg·h-1 | 15953.9 | 1.1 |
SO2 | kg·h-1 | 3.32×10-9 | 0.0014 |
kg·h-1 | 0.037 | 0.034 | |
kg·h-1 | 6288.8 | 6823.5 | |
kg·h-1 | 53.9 | 58.4 | |
kg·h-1 | 1073.5 | 1218.2 | |
kg·h-1 | 950.0 | 919.1 | |
CaSO4(s) | kg·h-1 | 32.0 | 31.1 |
Cl- | kg·h-1 | 246.6 | 267.5 |
总流量 | kg·h-1 | 28452.5 | 13825.4 |
Table 2 Drying tower inlet and outlet parameters
物质名称 | 单位 | 喷入前脱硫废水 | 喷入后脱硫废水 |
---|---|---|---|
water | kg·h-1 | 15953.9 | 1.1 |
SO2 | kg·h-1 | 3.32×10-9 | 0.0014 |
kg·h-1 | 0.037 | 0.034 | |
kg·h-1 | 6288.8 | 6823.5 | |
kg·h-1 | 53.9 | 58.4 | |
kg·h-1 | 1073.5 | 1218.2 | |
kg·h-1 | 950.0 | 919.1 | |
CaSO4(s) | kg·h-1 | 32.0 | 31.1 |
Cl- | kg·h-1 | 246.6 | 267.5 |
总流量 | kg·h-1 | 28452.5 | 13825.4 |
物质名称 | 单位 | 浓缩塔入口废水含量 | 浓缩塔出口废水含量 | 干燥塔出口废水含量 |
---|---|---|---|---|
water | kg·h-1 | 16946.53 | 9704.90 | 1.85 |
SO2 | kg·h-1 | 2.03×10-7 | 0.61 | 0.0015 |
kg·h-1 | 10.20 | 1.11 | 1.11 | |
kg·h-1 | 5626.34 | 4884.68 | 4884.68 | |
kg·h-1 | 47.37 | 41.12 | 41.12 | |
kg·h-1 | 647.08 | 488.31 | 488.31 | |
kg·h-1 | 1488.19 | 1443.85 | 1443.85 | |
CaSO4(s) | kg·h-1 | 33.62 | 35.42 | 35.42 |
Cl- | kg·h-1 | 220.76 | 191.84 | 191.84 |
总流量 | kg·h-1 | 28452.5 | 19770.80 | 10247.29 |
Table 3 Concentration - drying method of import and export material changes
物质名称 | 单位 | 浓缩塔入口废水含量 | 浓缩塔出口废水含量 | 干燥塔出口废水含量 |
---|---|---|---|---|
water | kg·h-1 | 16946.53 | 9704.90 | 1.85 |
SO2 | kg·h-1 | 2.03×10-7 | 0.61 | 0.0015 |
kg·h-1 | 10.20 | 1.11 | 1.11 | |
kg·h-1 | 5626.34 | 4884.68 | 4884.68 | |
kg·h-1 | 47.37 | 41.12 | 41.12 | |
kg·h-1 | 647.08 | 488.31 | 488.31 | |
kg·h-1 | 1488.19 | 1443.85 | 1443.85 | |
CaSO4(s) | kg·h-1 | 33.62 | 35.42 | 35.42 |
Cl- | kg·h-1 | 220.76 | 191.84 | 191.84 |
总流量 | kg·h-1 | 28452.5 | 19770.80 | 10247.29 |
物质名称 | 单位 | 多效蒸馏入口脱硫废水 | 多效蒸馏出口脱硫废水 |
---|---|---|---|
water | kg·h-1 | 17196.00 | 9701.67 |
SO2 | kg·h-1 | 2.92×10-9 | 0 |
kg·h-1 | 0.031 | 0.030 | |
kg·h-1 | 4585.17 | 4715.64 | |
kg·h-1 | 39.78 | 40.89 | |
kg·h-1 | 1459.35 | 1529.06 | |
kg·h-1 | 1441.47 | 1424.68 | |
CaSO4(s) | kg·h-1 | 18.53 | 18.73 |
Cl- | kg·h-1 | 179.75 | 184.86 |
总流量 | kg·h-1 | 28452.5 | 21197.06 |
Table 4 Multi-effect distillation import and export material changes
物质名称 | 单位 | 多效蒸馏入口脱硫废水 | 多效蒸馏出口脱硫废水 |
---|---|---|---|
water | kg·h-1 | 17196.00 | 9701.67 |
SO2 | kg·h-1 | 2.92×10-9 | 0 |
kg·h-1 | 0.031 | 0.030 | |
kg·h-1 | 4585.17 | 4715.64 | |
kg·h-1 | 39.78 | 40.89 | |
kg·h-1 | 1459.35 | 1529.06 | |
kg·h-1 | 1441.47 | 1424.68 | |
CaSO4(s) | kg·h-1 | 18.53 | 18.73 |
Cl- | kg·h-1 | 179.75 | 184.86 |
总流量 | kg·h-1 | 28452.5 | 21197.06 |
技术路线 | 消耗热量/kW | 入口废水流量/(kg·h-1) | 结晶固体/(kg·h-1) | 凝结水含量/(kg·h-1) | 高温烟气热量/kW |
---|---|---|---|---|---|
旁路烟气+干燥 | 10323.75 | 28452.5 | 13825.39 | N/A | 10323.75 |
浓缩塔+干燥 | 12590.74 | 28452.54 | 10247.29 | N/A | 6695.37 |
MED +干燥 | 9142.97 | 28452.54 | 12455.26 | 7208.68 | 6692.97 |
MED+热泵+干燥 | 6213.89 | 28452.54 | 12710.46 | 13208.57 | 2358.65 |
Table 5 Quantitative comparison of four process routes
技术路线 | 消耗热量/kW | 入口废水流量/(kg·h-1) | 结晶固体/(kg·h-1) | 凝结水含量/(kg·h-1) | 高温烟气热量/kW |
---|---|---|---|---|---|
旁路烟气+干燥 | 10323.75 | 28452.5 | 13825.39 | N/A | 10323.75 |
浓缩塔+干燥 | 12590.74 | 28452.54 | 10247.29 | N/A | 6695.37 |
MED +干燥 | 9142.97 | 28452.54 | 12455.26 | 7208.68 | 6692.97 |
MED+热泵+干燥 | 6213.89 | 28452.54 | 12710.46 | 13208.57 | 2358.65 |
1 | 张静. 燃煤电厂脱硫废水零排放处理技术研究进展[J]. 煤质技术, 2021, 36(02): 7-13. |
Zhang J. Research progress on zero-discharge treatment technology of desulfurization wastewater in coal-fired power plant[J]. Coal Quality Technology, 2021, 36(2): 7-13. | |
2 | 张家平, 孙碧玉, 何志炜. 脱硫废水“零排放”技术研究进展[J]. 中国环保产业, 2020(12): 52-58. |
Zhang J P, Sun B Y, He Z W. Research progress of technologies for “zero discharge” of desulfurization wastewater[J]. China Environmental Protection Industry, 2020(12): 52-58. | |
3 | 蒋路漫, 周振, 田小测, 等. 电厂烟气脱硫废水零排放工艺中试研究[J]. 热力发电, 2019, 48(1): 103-109. |
Jiang L M, Zhou Z, Tian X C, et al. Pilot-scale study on zero liquid discharge technology of flue gas desulfurization wastewater in coal-fired power plants[J]. Thermal Power Generation, 2019, 48(1): 103-109. | |
4 | Yan M W, Shi Y T. Thermal and economic analysis of multi-effect concentration system by utilizing waste heat of flue gas for magnesium desulfurization wastewater[J]. Energies, 2020, 13(20): 5384. |
5 | Han X Q, Zhang D, Yan J J, et al. Process development of flue gas desulphurization wastewater treatment in coal-fired power plants towards zero liquid discharge: Energetic, economic and environmental analyses[J]. Journal of Cleaner Production, 2020, 261: 121144. |
6 | 佘晓利, 潘卫国, 郭士义, 等. 燃煤电厂湿法烟气脱硫废水零排放技术进展[J]. 应用化工, 2018, 47(1): 160-164. |
She X L, Pan W G, Guo S Y, et a1. Advances in zero-discharge technology for wet flue gas desulfurization wastewater from coal-fired power plants[J]. Applied Chemical Industry, 2018, 47(1): 160-164. | |
7 | 杨跃伞, 苑志华, 张净瑞, 等. 燃煤电厂脱硫废水零排放技术研究进展[J]. 水处理技术, 2017, 43(6): 29-33. |
Yang Y S, Yuan Z H, Zhang J R, et a1. Research progress of technologies for zero-discharge of desulfurization wastewater from coal-fired power plants[J]. Technology of Water Treatment, 2017, 43(6): 29-33. | |
8 | 吴优福, 刘捷, 海玉琰, 等. 超超临界1000 MW机组脱硫废水零排放技术[J]. 热力发电, 2017, 46(5): 108-114. |
Wu Y F, Liu J, Hai Y Y, et a1. Discussions on zero-discharge technology of desulfurization wastewater for ultra supercritical units[J]. Thermal Power Generation, 2017, 46(5): 108-114. | |
9 | 杜献亮. 煤化工行业高含盐废水处理及多效蒸发结晶技术的应用[J]. 煤炭与化工, 2014, 37(12): 129-131, 142. |
Du X L. Treatment of high salt wastewater in coal chemical industry and application of multi-effect evaporation crystallization technology[J]. Coal and Chemical Industry, 2014, 37(12): 129-131, 142. | |
10 | 张净瑞, 梁海山, 郑煜铭, 等. 基于旁路烟道蒸发的脱硫废水零排放技术在火电厂的应用[J]. 环境工程, 2017, 35(10): 5-9. |
Zhang J R, Liang H S, Zheng Y M, et al. Application of zero liquid discharge system of the desulfurization wastewater based on bypass flue evaporation system in thermal power plants[J]. Environmental Engineering, 2017, 35(10): 5-9. | |
11 | 程国辉. 燃煤电厂湿法脱硫废水零排放处理技术[J]. 化学工程与装备, 2021(4): 247-248. |
Cheng G H. Zero discharge treatment technology of wet desulfurization wastewater in coal-fired power plant[J]. Chemical Engineering & Equipment, 2021(4): 247-248. | |
12 | 刘应书, 孙宁起, 李子宜, 等. 冷凝法回收烟气吸附脱硫解吸气中SO2工艺参数的影响规律研究[J]. 化工学报, 2020, 71(12): 5620-5627. |
Liu Y S, Sun N Q, Li Z Y, et al. Influence of process parameters of condensation on the recovery of SO2 in desorption gas from flue gas adsorption desulfurization[J]. CIESC Journal, 2020, 71(12): 5620-5627. | |
13 | 马双忱, 陈嘉宁, 刘宁, 等. 低温烟气余热浓缩脱硫废水实验研究与探讨[J]. 动力工程学报, 2020, 40(1): 51-57, 64. |
Ma S C, Chen J N, Liu N, et al. Experimental study on the concentration of FGD wastewater using low-temperature flue gas[J]. Journal of Chinese Society of Power Engineering, 2020, 40(1): 51-57, 64. | |
14 | Guo H Q, Wang J, Wu J B, et al. Study on spray evaporation treatment of desulfurization wastewater[J]. Coatings, 2021, 11(4):418. |
15 | 马双忱, 周权, 曹建宗, 等. 湿法脱硫系统动态过程建模与仿真[J]. 化工学报, 2020, 71(8): 3741-3751. |
Ma S C, Zhou Q, Cao J Z, et al. Modeling and simulation of wet desulfurization system dynamic process[J]. CIESC Journal, 2020, 71(8): 3741-3751. | |
16 | Chen H, Liu F J, Cai C J, et al. Release and migration characteristics of chlorine during the desulfurization wastewater evaporation process[J]. Fuel Processing Technology, 2021, 218: 106863. |
17 | Xu Y, Jin B, Zhou Z, et al. Experimental and numerical investigations of desulfurization wastewater evaporation in a lab-scale flue gas duct: evaporation and HCl release characteristics[J]. Environmental Technology, 2021, 42(9): 1411-1427. |
18 | 滕达, 李铁林, 李昂, 等. 单通道陶瓷膜管低压透水性能实验分析[J]. 化工学报, 2020, 71: 261-271. |
Teng D, Li T L, Li A, et al. Experimental analysis of low pressure water permeability of single channel ceramic membrane tube[J]. CIESC Journal, 2020, 71: 261-271. | |
19 | 李飞. 旋转雾化蒸发技术对脱硫废水和烟气的适应性研究[J]. 中国电力, 2021, 54(4): 213-220. |
Li F. Study on the adaptability of rotary atomization evaporation technology to desulfurization wastewater and flue gas[J]. Electric power[J]. Electric Power, 2021, 54(4): 213-220. | |
20 | Neveux T, Hagi H, Le Moullec Y. Performance simulation of full-scale wet flue gas desulfurization for oxy-coal combustion[J]. Energy Procedia, 2014, 63: 463-470. |
21 | Gutiérrez Ortiz F J. A simple realistic modeling of full-scale wet limestone FGD units[J]. Chemical Engineering Journal, 2010, 165(2): 426-439. |
22 | 展锦程, 冉景煜, 孙图星. 烟气脱硫吸收塔反应过程的数值模拟及试验研究[J]. 动力工程, 2008, 28(3): 433-437, 446. |
Zhan J C, Ran J Y, Sun T X. Numerical simulation and experimental study on desulfurization process in FGD absorbers[J]. Journal of Power Engineering, 2008, 28(3): 433-437, 446. | |
23 | 张建华, 池毓菲, 邹宜金, 等. 燃煤电厂脱硫废水处理技术工程应用现状与展望[J]. 工业水处理, 2020, 40(10): 14-19. |
Zhang J H, Chi Y F, Zou Y J, et al. Application progress and prospect of desulfurization wastewater treatment technologies in coal-fired power plants[J]. Industrial Water Treatment, 2020, 40(10): 14-19. | |
24 | 周正, 曹扬, 丁卫华, 等. 浓缩蒸发工艺在660 MW机组脱硫废水零排放中的应用[J]. 水处理技术, 2020, 46(11): 117-119, 124. |
Zhou Z, Cao Y, Ding W H, et al. Application of concentrated evaporation technology in zero smission of desulfurization wastewater of a 660 MW unit[J]. Technology of Water Treatment, 2020, 46(11): 117-119, 124. | |
25 | 刘春红, 秦刚华, 邹正伟, 等. 燃煤发电厂的深度节水与废水零排放[J]. 水处理技术, 2020, 46(10): 128-132. |
Liu C H, Qin G H, Zou Z W, et al. Deep water saving and zero liquid dischargeincoal-fired power plant[J]. Technology of Water Treatment, 2020, 46(10): 128-132. | |
26 | 林炜. 烟道蒸发脱硫废水零排放的优化应用研究[J]. 安全与环境工程, 2020, 27(5): 55-61. |
Lin W. Study on the optimal application of zero discharge of flue evaporation desulfurization wastewater[J]. Safety and Environmental Engineering, 2020, 27(5): 55-61. | |
27 | Zhang X M, Zhang C L, Meng F N, et al. Near-zero liquid discharge of desulfurization wastewater by electrodialysis-reverse osmosis hybrid system[J]. Journal of Water Process Engineering, 2021, 40: 101962. |
28 | 许甲清, 叶春松, 李清, 等. 脱硫废水低温烟气蒸发零排放系统平衡计算[J]. 热力发电, 2021, 50(2): 97-103. |
Xu J Q, Ye C S, Li Q, et al. Balance calculation for zero discharge system of desulfurization wastewater using low temperature flue gas evaporation method[J]. Thermal Power Generation, 2021, 50(2): 97-103. | |
29 | Ma S C, Chai J, Chen G D, et al. Research on desulfurization wastewater evaporation: Present and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1143-1151. |
30 | Ma S C, Chai J, Wu K, et al. Experimental research on bypass evaporation tower technology for zero liquid discharge of desulfurization wastewater[J]. Environmental Technology, 2019, 40(20): 2715-2725. |
[1] | Tianyuan WANG, Chunbo CHEN, Lin SUN, Xionglin LUO. Optimal design of slow-time-varying system for multi-effect distillation desalination based on full-cycle slow fouling [J]. CIESC Journal, 2022, 73(2): 759-769. |
[2] | Chunbo CHEN, Xionglin LUO, Lin SUN. Time-varying analysis of feasible region and full-cycle operating optimization in multi-effect distillation seawater desalination system [J]. CIESC Journal, 2021, 72(11): 5686-5695. |
[3] | Shuangchen MA, Zixuan FAN, Zhongcheng WAN, Jianing CHEN, Jingrui ZHANG, Caini MA. Experimental study on oxidation characteristics of sulfite under high salt water condition [J]. CIESC Journal, 2019, 70(5): 1964-1972. |
[4] | QI Chunhua, XING Yulei, KANG Quan, XU Ke, FENG Houjun. Pilot test of a 30 t·d-1 desalination device with multi-effect and operated at low temperature by evaporating seawater [J]. CIESC Journal, 2013, 64(8): 3023-3030. |
[5] | WU Wei, SHI Wenxing, WANG Baolong, LI Xianting. Simulation on performance of air source absorption heat pumps with different compression-assisted approaches [J]. CIESC Journal, 2013, 64(7): 2360-2368. |
[6] | JIA Hongshu1,FU Lin1,ZHANG Shigang2. Open absorption heat pump and application in flue gas waste heat recovering [J]. Chemical Industry and Engineering Progree, 2013, 32(12): 2805-2812. |
[7] | ZHENG Huanhuan,WU Lianying,HU Yangdong . Process simulation and optimization of one-step synthesis of dimethyl ether from syngas [J]. Chemical Industry and Engineering Progree, 2013, 32(06): 1236-1241. |
[8] | LÜ Xianghong. Energy-saving distillation for separation of LNG [J]. , 2008, 27(6): 954-. |
[9] | LI Ying, DU jian, YAO Pingjing. Design of Water Network with Multiple Contaminants and Zero Discharge [J]. , 2003, 11(5): 559-564. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||