CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6216-6231.DOI: 10.11949/0438-1157.20211200
• Reviews and monographs • Previous Articles Next Articles
Wenqi ZOU1(),Tong CHEN1,Haimu YE2,Shujing ZHANG1,Jun XU1(),Baohua GUO1()
Received:
2021-08-20
Revised:
2021-11-26
Online:
2021-12-22
Published:
2021-12-05
Contact:
Jun XU,Baohua GUO
邹文奇1(),陈通1,叶海木2,张淑景1,徐军1(),郭宝华1()
通讯作者:
徐军,郭宝华
作者简介:
邹文奇(1991—),男,博士,助理研究员,基金资助:
CLC Number:
Wenqi ZOU, Tong CHEN, Haimu YE, Shujing ZHANG, Jun XU, Baohua GUO. Research progress on the preparation and properties of biodegradable polyester[J]. CIESC Journal, 2021, 72(12): 6216-6231.
邹文奇, 陈通, 叶海木, 张淑景, 徐军, 郭宝华. 可生物降解聚酯的制备及性能研究进展[J]. 化工学报, 2021, 72(12): 6216-6231.
Add to citation manager EndNote|Ris|BibTeX
1 | Xu J, Guo B H. Poly(butylene succinate) and its copolymers: research, development and industrialization[J]. Biotechnology Journal, 2010, 5(11): 1149-1163. |
2 | 刁晓倩, 翁云宣, 宋鑫宇, 等. 国内外生物降解塑料产业发展现状[J]. 中国塑料, 2020, 34(5):123-135. |
Diao X Q, Weng Y X, Song X Y, et al. Current development situation of biodegradable plastic industry in China and abroad[J]. China Plastics, 2020, 34(5): 123-135. | |
3 | 弗里斯, 卢斯, 凯克, 等. 可生物降解的聚酯薄膜: 201280022427[P]. 2012-05-09. |
Frith F, Luz R, Keck J, et al. Biodegradable polyester film: 201280022427[P]. 2012-05-09. | |
4 | 本森, 萨姆纳, 施勒德. 利用内消旋丙交酯再循环来制备丙交酯的方法: 201080021187[P]. 2010-03-12. |
Benson R D, Sumner E S, Schroeder J D. Methods for producing lactide with recycle of meso-lactide: 201080021187[P]. 2010-03-12. | |
5 | 戈比乌斯杜萨特. 用于制备丙交酯和聚丙交酯混合物的方法: 201980043025[P]. 2019-06-25. |
Gobius Du Sart G. Process for preparation of lactide and polylactide mixture: 201980043025[P]. 2019-06-25. | |
6 | 青岛敬之, 三木康彰, 熊泽胜久, 等. 来自生物质资源的聚酯及其制造方法: 201310070301[P]. 2006-04-21. |
Takayuki A, Yasuaki M, Katsuhisa K, et al. Polyester derived from biomass resources and method for production thereof: 201310070301[P]. 2006-04-21. | |
7 | 巴斯蒂奥利, 卡普兹, 罗梭, 等. 抗光降解的可生物降解的薄膜: 201380052953[P]. 2013-10-09. |
Bastioli C, Capuzzi L, Russo C, et al. Photodegradation-resistant biodegradable films: 201380052953[P]. 2013-10-09. | |
8 | 赵巍, 焦建, 叶丹滢, 等. 一种生物降解脂肪族-芳香族共聚酯组合物及其应用: 201410711829[P]. 2014-12-01. |
Zhao W, Jiao J, Ye D L, et al. Biodegradable aliphatic-aromatic copolyester composition and application thereof: 201410711829[P]. 2014-12-01. | |
9 | 赵巍, 焦建, 叶丹滢, 等. 一种生物降解脂肪族-芳香族共聚酯及其应用: 201410711818[P]. 2014-12-01. |
Zhao W, Jiao J, Ye D L, et al. Biodegradable aliphatic-aromatic copolyester and application thereof: 201410711818[P]. 2014-12-01. | |
10 | 罗子辉, 丁建萍, 陈雷, 等. 一种全生物降解地膜及其制备方法和应用: 201910427423[P]. 2019-05-22. |
Luo Z H, Ding J P, Chen L, et al. Fully-biodegradable mulch film, and preparation method and application thereof: 201910427423[P]. 2019-05-22. | |
11 | Holmberg A L, Reno K H, Wool R P, et al. Biobased building blocks for the rational design of renewable block polymers[J]. Soft Matter, 2014, 10(38):7405-7424. |
12 | 王国利, 徐军, 郭宝华. 可生物降解聚丁二酸丁二醇酯及其共聚物的合成及改性研究进展[J]. 高分子通报, 2011(4):99-109. |
Wang G L, Xu J, Guo B H. Development in synthesis and modification of biodegradable poly(butylene succinate) and its copolymers[J]. Polymer Bulletin, 2011(4): 99-109. | |
13 | Ma J P, Pang Y, Wang M, et al. The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials[J]. Journal of Materials Chemistry, 2012, 22(8): 3457-3461. |
14 | Wu H L, Wen B B, Zhou H, et al. Synthesis and degradability of copolyesters of 2, 5-furandicarboxylic acid, lactic acid, and ethylene glycol[J]. Polymer Degradation and Stability, 2015, 121: 100-104. |
15 | Zheng L C, Wang Z D, Wu S H, et al. Novel poly(butylene fumarate) and poly(butylene succinate) multiblock copolymers bearing reactive carbon-carbon double bonds: synthesis, characterization, cocrystallization, and properties[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6147-6155. |
16 | Wang J G, Liu X Q, Zhu J, et al. Copolyesters based on 2, 5-furandicarboxylic acid (FDCA): effect of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol units on their properties[J]. Polymers, 2017, 9(12): 305. |
17 | Sousa A F, Matos M, Freire C S R, et al. New copolyesters derived from terephthalic and 2, 5-furandicarboxylic acids: a step forward in the development of biobased polyesters[J]. Polymer, 2013, 54(2): 513-519. |
18 | 唐一壬, 齐治国, 张旸, 等. 生物降解塑料聚丁二酸丁二酯及其共聚物: 从基础研究到产业化[J]. 高分子通报, 2015(9): 126-141. |
Tang Y R, Qi Z G, Zhang Y, et al. Biodegradable plastics poly(butylene succinate) and its copolymers: from fundamental research to industrialization[J]. Polymer Bulletin, 2015(9): 126-141. | |
19 | 孙元碧, 徐军, 徐永祥, 等. 生物可降解聚丁二酸/甲基丁二酸丁二酯系列共聚物的合成和表征[J]. 高等学校化学学报, 2006, 27(2): 360-364. |
Sun Y B, Xu J, Xu Y X, et al. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene methyl succinate)[J]. Chemical Journal of Chinese Universities, 2006, 27(2): 360-364. | |
20 | Liu J, Ye H M, Xu J, et al. Formation of ring-banded spherulites of α and β modifications in poly(butylene adipate)[J]. Polymer, 2011, 52(20): 4619-4630. |
21 | 徐永祥, 徐军, 孙元碧,等. 聚(丁二酸丁二酯-co-丁二酸丙二酯)的等温结晶行为研究[J]. 高分子学报, 2006 (8):1000-1006. |
Xu Y X, Xu J, Sun Y B, et al. Crystallization behavior of poly(butylene succinate-co-propylene succinate)s[J]. Acta Polymerica Sinica, 2006 (8):1000-1006. | |
22 | Xu Y X, Xu J, Guo B H, et al. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s[J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(4):420-428. |
23 | Wang G L, Gao B, Ye H M, et al. Synthesis and characterizations of branched poly(butylene succinate) copolymers with 1, 2-octanediol segments[J]. Journal of Applied Polymer Science, 2010, 117(5): 2538-2544. |
24 | Ye H M, Tang Y R, Song Y Y, et al. Aliphatic copolyester with isomorphism in limited composition range[J]. Polymer, 2014, 55(22): 5811-5820. |
25 | 孙元碧, 徐军, 徐永祥,等. 生物可降解聚丁二酸/苯基丁二酸丁二醇酯系列共聚物的合成及其结晶行为[J]. 高分子学报, 2006, 6(6):745-749. |
Sun Y B, Xu J, Xu Y X, et al. Synthesis and crystallization behavior of biodegradable poly(butylene succinate-co-butylene phenylsuccinate)[J]. Acta Polymerica Sinica, 2006, 6(6):745-749. | |
26 | Ye H M, Wang R D, Liu J, et al. Isomorphism in poly(butylene succinate-co-butylene fumarate) and its application as polymeric nucleating agent for poly(butylene succinate)[J]. Macromolecules, 2012, 45(14): 5667-5675. |
27 | Ye H M, Tang Y R, Xu J, et al. Role of poly(butylene fumarate) on crystallization behavior of poly(butylene succinate)[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10682-10689. |
28 | Mochizuki M, Mukai K, Yamada K, et al. Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s[J]. Macromolecules, 1997, 30(24):7403-7407. |
29 | Xu Y X, Xu J, Liu D H, et al. Synthesis and characterization of biodegradable poly(butylene succinate-co-propylene succinate)s[J]. Journal of Applied Polymer Science, 2008, 109(3): 1881-1889. |
30 | Rizzarelli P, Puglisi C, Montaudo G. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters[J]. Polymer Degradation and Stability, 2004, 85(2): 855-863. |
31 | 郭宝华, 丁慧鸽, 徐晓琳, 等. 生物可降解共聚物聚丁二酸/对苯二甲酸丁二醇酯(PBST)的序列结构及结晶性研究[J]. 高等学校化学学报, 2003, 24(12): 2312-2316. |
Guo B H, Ding H G, Xu X L, et al. Studies on the sequence structure and crystallinity of poly(butylene succinate) copolymers with terephthalic acid[J]. Chemical Research in Chinese Universities, 2003, 24(12): 2312-2316. | |
32 | Xu J, Guo B H. Microbial succinic acid, its polymer poly (butylene succinate), and applications[M]// |
Chen G Q. Plastics from Bacteria. Microbiology Monographs.vol 14. Berlin, Heidelberg: Springer, 2010, 347-388. | |
33 | Fujimaki T. Processability and properties of aliphatic polyesters, 'BIONOLLE', synthesized by polycondensation reaction[J]. Polymer Degradation and Stability, 1998, 59( 1/2/3):209-214. |
34 | 高兵. 可降解聚丁二酸丁二酯及其共聚物的合成及性能研究[D].北京: 清华大学, 2009. |
Gao B. Synthesis and characterization of biodegradable poly(butylene succinate) copolymers[D]. Beijing: Tsinghua University, 2009. | |
35 | Zheng L C, Wang Z D, Li C C, et al. Novel unsaturated aliphatic polyesters: synthesis, characterization, and properties of multiblock copolymers composing of poly(butylene fumarate) and poly(1, 2-propylene succinate)[J]. Industrial & Engineering Chemistry Research, 2012, 51(43): 14107-14114. |
36 | Zheng L C, Li C C, Wang Z D, et al. Novel biodegradable and double crystalline multiblock copolymers comprising of poly(butylene succinate) and poly(ε-caprolactone): synthesis, characterization, and properties[J]. Industrial & Engineering Chemistry Research, 2012, 51(21): 7264-7272. |
37 | Zhou J L, Zhu Q Q, Pan W N, et al. Thermal stability of bio-based aliphatic-semiaromatic copolyester for melt-spun fibers with excellent mechanical properties[J]. Macromolecular Rapid Communications, 2021, 42(3): 2000498. |
38 | Li S M, Rashkov I, Espartero J L, et al. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(L-lactic acid) blocks[J]. Macromolecules, 1996, 29(1): 57-62. |
39 | Wu S Y, Zhang Y, Han J R, et al. Copolymerization with polyether segments improves the mechanical properties of biodegradable polyesters[J]. ACS Omega, 2017, 2(6):2639-2648. |
40 | Nojima S, Kakihira H, Tanimoto S, et al. Crystallization of poly(ε-caprolactone)-block-polystyrene copolymers from glassy microdomain structures[J]. Polymer Journal, 2000,32(1):75-78. |
41 | Castillo R V, Müller A J. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers[J]. Progress in Polymer Science, 2009, 34(6): 516-560. |
42 | Gan Z, Abe H, Kurokawa H, et al. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters[J]. Biomacromolecules, 2001, 2(2):605-613. |
43 | 邬舒怡. 生物可降解丁二酸基共聚酯的合成和性能研究[D].北京: 清华大学, 2017. |
Wu S Y. Synthesis and properties study on biodegradable poly(butylene succinate) copolymers[D]. Beijing: Tsinghua University, 2017. | |
44 | Han J R, Weng Y X, Xu J, et al. Thermo-sensitive micelles based on amphiphilic poly(butylene 2-methylsuccinate)-poly(ethylene glycol) multi-block copolyesters as the pesticide carriers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575:84-93. |
45 | Souza P M S, Morales A R, Sanchez E M S, et al. Study of PBAT photostabilization with ultraviolet absorber in combination with hindered amine light stabilizer and vitamin E, aiming mulching film application[J]. Journal of Polymers and the Environment, 2018, 26(8): 3422-3436. |
46 | 唐钰晗. 负载型紫外线吸收剂的制备及其在 PBAT中的应用研究[D]. 广州: 华南理工大学, 2018. |
Tang Y H. The preparation of supported UV absorber and its application in PBAT films[D]. Guangzhou: South China University of Technology, 2018. | |
47 | Sintim H Y, Bary A I, Hayes D G, et al. Release of micro-and nanoparticles from biodegradable plastic during in situ composting[J]. The Science of The Total Environment, 2019, 675:686-693. |
48 | Zhang Y, Han J R, Wu S Y, et al. Synthesis, physical properties and photodegradation of functional poly(butylene succinate) covalently linking UV stabilizing moieties in molecular chains[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 524:160-168. |
49 | Lehn J M, Eliseev A V. Dynamic combinatorial chemistry[J]. Science, 2001, 291(5512):2331-2332. |
50 | Jin Y, Yu C, Denman R J, et al. Recent advances in dynamic covalent chemistry[J]. Chemical Society Reviews, 2013, 42(16):6634-6654. |
51 | Zhang Y, Barboiu M. Constitutional dynamic materials—toward natural selection of function[J]. Chemical Reviews, 2016, 116(3): 809-834. |
52 | Zhang Y, Li T, Xie Z, et al. Synthesis and properties of biobased multiblock polyesters containing poly(2,5-furandimethylene succinate) and poly(butylene succinate) blocks[J]. Industrial & Engineering Chemistry Research, 2017, 56(14):3937-3946. |
53 | Zhang Y, Dai Z, Han J, Li T, Xu J, Guo B. Interplay between crystallization and Diels -Alder reaction in biobased multiblock copolyesters possessing dynamic covalent bond[J]. Polymer Chemistry, 2017, 8, 4280-4289. |
54 | Chen T, Tian S N, Xie Z N, et al. Two new approaches based on dynamic carboxyl-hydroxyl or hydroxyl-carboxyl transformation for high molecular weight poly (butylene maleate)[J]. Polymer Chemistry, 2020, 11(36): 5884-5892. |
55 | Chen T, Geng K, Gao Y, et al. Highly stretchable and strong poly(butylene maleate) elastomers via metal-ligand interactions[J]. Polymer Chemistry, 2021, 12(6): 893-902 |
56 | Zheng L C, Wang Z D, Li C C, et al. Synthesis, characterization and properties of novel linear poly(butylene fumarate) bearing reactive double bonds[J]. Polymer, 2013, 54(2):631-638. |
57 | Wu S H, Zheng L C, Li C C, et al. A facile and versatile strategy to efficiently synthesize sulfonated poly(butylene succinate), self-assembly behavior and biocompatibility[J]. Polymer Chemistry, 2015, 6(9):1495-1501. |
58 | Qi J F, Wu J, Chen J Y, et al. An investigation of the thermal and (bio)degradability of PBS copolyesters based on isosorbide[J]. Polymer Degradation and Stability, 2019(160): 229-241. |
59 | Hu X R, Li Y, Gao Y, et al. Renewable and super-toughened poly (butylene succinate) with bio-based elastomers: preparation, compatibility and performances[J]. European Polymer Journal, 2019, 116: 438-444. |
60 | Tachibana Y, Yamahata M, Kimura S, et al. Synthesis, physical properties, and biodegradability of biobased poly(butylene succinate-co-butylene oxabicyclate)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10806-10814. |
61 | Zhang X W, Nakagawa R, Chan K H K, et al. Mechanical property enhancement of polylactide nanofibers through optimization of molecular weight, electrospinning conditions, and stereocomplexation[J]. Macromolecules, 2012, 45(13):5494-5500. |
62 | Jariyasakoolroj P, Rojanaton N, Jarupan L. Crystallization behavior of plasticized poly(Lactide) film by poly( L-lactic acid)-poly(ethylene glycol)-poly( L-lactic acid) triblock copolymer[J]. Polymer Bulletin, 2020, 77(5):2309-2323. |
63 | Tsuji H, Iguchi K, Tashiro K, et al. Crystallization behavior, structure, morphology, and thermal properties of crystalline and amorphous stereo diblock copolymers, poly (L-lactide)-b-poly (DL-lactide)[J]. Polymer Chemistry, 2020, 11(36): 5711-5724. |
64 | Lee S, Jin Y, Lim K T, et al. Synthesis and properties of block copolymers of enantiomeric polylactide and biopolyester[J]. Molecular Crystals and Liquid Crystals, 2019,688(1): 14-21. |
65 | Fan T T, Ye W Y, Du B B, et al. Effect of segment structures on the hydrolytic degradation behaviors of totally degradable poly(L‐lactic acid)-based copolymers[J]. Journal of Applied Polymer Science, 2019, 136(33): 47887. |
66 | Zaaba N F, Jaafar M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation[J]. Polymer Engineering & Science, 2020, 60(9): 2061-2075. |
67 | Lodge T P. Celebrating 50 years of macromolecules[J]. Macromolecules, 2017, 50(24):9525-9527. |
68 | Hu W B. The physics of polymer chain-folding[J]. Physics Reports, 2018, 747: 1-50. |
69 | Jiang N, Zhao L F, Gan Z H. Influence of nucleating agent on the formation and enzymatic degradation of poly(butylene adipate) polymorphic crystals[J]. Polymer Degradation and Stability, 2010, 95(6): 1045-1053. |
70 | Luo F, Geng C Z, Wang K, et al. New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology[J]. Macromolecules, 2009, 42(23): 9325-9331. |
71 | Zhang S J, Han J R, Gao Y, et al. Determination of the critical size of secondary nuclei on the lateral growth front of lamellar polymer crystals[J]. Macromolecules, 2019, 52(19): 7439-7447. |
72 | Lauritzen J I, Hoffman J D. Theory of formation of polymer crystals with folded chains in dilute solution[J]. Journal of Research of the National Bureau of Standards Section A Physics and Chemistry, 1960, 64A(1):73-102. |
73 | Hoffman J D, Lauritzen J I. Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites[J]. Journal of Research of the National Bureau of Standards Section A Physics and Chemistry, 1961, 65A(4):297. |
74 | Zhang S J, Guo B H, Reiter G, et al. Estimation of the size of critical secondary nuclei of melt-grown poly(L-lactide) lamellar crystals[J]. Macromolecules, 2020, 53(9). 3482-3492. |
75 | Zhao C, He X, Zou G, et al. Biodegradable poly(butylene succinate-co-butylene dimerized fatty acid)s: synthesis, crystallization, mechanical properties, and rheology[J]. Polymer Science Series B, 2016, 58(2):183-193. |
76 | Tan B, Bi S, Emery K, et al. Bio-based poly(butylene succinate-co-hexamethylene succinate) copolyesters with tunable thermal and mechanical properties[J]. European Polymer Journal, 2017, 86:162-172. |
77 | Allegra G, Bassi I W. Isomorphism in synthetic macromolecular systems[J]. Advances in Polymer Science, 1969, 6(4):549-574. |
78 | Ichikawa Y, Kondo H, Igarashi Y, et al. Crystal structures of α and β forms of poly(tetramethylene succinate)[J]. Polymer, 2000, 41(12): 4719-4727. |
79 | Jiang J, Zhuravlev E, Hu W B, et al. The effect of self-nucleation on isothermal crystallization kinetics of poly(butylene succinate) (PBS) investigated by differential fast scanning calorimetry[J]. Chinese Journal of Polymer Science, 2017, 35(8):1009-1019. |
80 | Ye H M, Yao S F. Supernucleating role of poly(ω-pentadecalactone) during the crystallization of poly(ε-caprolactone) composites[J]. Industrial & Engineering Chemistry Research, 2017, 56(46):13725-13733. |
81 | Ye H M, Liu P, Wang C X, et al. Polymorphism regulation in poly(hexamethylene succinate-co-hexamethylene fumarate): altering the hydrogen bonds in crystalline lattice[J]. Polymer, 2017, 108:272-280. |
82 | Ye H M, Wang J, Wang C S, et al. Unique isodimorphism of poly(decamethylene succinate-ran-decamethylene fumarate): large pseudoeutectic region and fantastic crystallization/melting behavior[J]. Macromolecules, 2019, 52(4): 1447-1457. |
83 | Wei X W, Huang G Y, Wang J, et al. Tailoring crystallization of random terpolyester: combination of isodimorphism and isomorphism[J]. Macromolecules, 2020, 53(20): 8918-8927. |
[1] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[2] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[3] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[4] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[5] | Xuan ZHOU, Mengya LI, Jie SUN, Zhenkai CEN, Qiangsan LYU, Lishan ZHOU, Haitao WANG, Dandan HAN, Junbo GONG. The regulation mechanism of additives on the amino acid crystal growth [J]. CIESC Journal, 2023, 74(2): 500-510. |
[6] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[7] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[8] |
Guoxin SUN, Mengxuan GOU, Cheng ZHOU, Pei CHANG, Gaohong HE, Xiaobin JIANG.
Membrane distillation crystallization coupling process for the treatment of high concentration Na+//NO |
[9] | Xueying NAI, Peng WU, Yuan CHENG, Jianfei XIAO, Xin LIU, Yaping DONG. Study on hydrothermal crystallization kinetics of magnesium oxysulfate nanowires [J]. CIESC Journal, 2022, 73(7): 3038-3044. |
[10] | Haiqing YIN, Yiming MA, Xuxing WAN, Weibing DONG, Yulong ZHANG, Songgu WU. Research of lithium carbonate three-phase reactive crystallization process [J]. CIESC Journal, 2022, 73(3): 1207-1220. |
[11] | Xuemei CHEN, Tong WANG, Yubo GAO, Dingcheng PENG, Yuting LUO. Efficient solar interfacial evaporation using laser-induced graphene [J]. CIESC Journal, 2022, 73(12): 5648-5659. |
[12] | Pengcheng JING, Litao CHEN, Chuanliang YAN, Chuanxiang JIANG, Yuxiang XIA, Changhong YU, Haotian WANG. Study on growth process of semiclathrate hydrate on the surface of TBAB solution droplets suspended by ultrasonic [J]. CIESC Journal, 2022, 73(11): 4893-4902. |
[13] | Chong HE, Jin BAI, Jing GUO, Lingxue KONG, Hao LU, Huaizhu LI, Yuhong QIN, Wen LI. Effects of atmosphere and chemical composition on fusion characteristics of high-iron coal ash [J]. CIESC Journal, 2022, 73(10): 4648-4658. |
[14] | Haifeng ZHENG, Shengzhe JIA, Songcheng WANG, Rui HAN, Dandan HAN, Zhenguo GAO, Junbo GONG. Advances in crystallization of ultrafine crystals [J]. CIESC Journal, 2022, 73(10): 4285-4297. |
[15] | Shanshan FENG, Xiaobin LIU, Shilin GUO, Bingbing HE, Zhenguo GAO, Mingyang CHEN, Junbo GONG. Nucleation, growth and inhibition of lithium dendrites [J]. CIESC Journal, 2022, 73(1): 97-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||