1 |
Sun Y Q, Zheng Y F, Wang X L, et al. Fermentation performance and mechanism of a novel microbial consortium DUT08 for 1, 3-propandiol production from biodiesel-derived crude glycerol under non-strictly anaerobic conditions[J]. Process Biochemistry, 2019, 83: 27-34.
|
2 |
Laura M, Monica T, Dan-Cristian V. The effect of crude glycerol impurities on 1,3-propanediol biosynthesis by Klebsiella pneumoniae DSMZ 2026[J]. Renewable Energy, 2020, 153: 1418-1427.
|
3 |
Pan D T, Wang X D, Shi H Y, et al. Dynamic flux balance analysis for microbial conversion of glycerol into 1, 3-propanediol by Klebsiella pneumoniae [J]. Bioprocess and Biosystems Engineering, 2018, 41(12): 1793-1805.
|
4 |
Chatzifragkou A, Papanikolaou S, Dietz D, et al. Production of 1, 3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process[J]. Applied Microbiology and Biotechnology, 2011, 91(1): 101-112.
|
5 |
Jun S A, Moon C, Kang C H, et al. Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae [J]. Applied Biochemistry and Biotechnology, 2010, 161: 491-501.
|
6 |
Fokum E, Zabed H M, Yun J, et al. Recent technological and strategical developments in the biomanufacturing of 1,3-propanediol from glycerol[J]. International Journal of Environmental Science and Technology, 2021, 18(8): 2467-2490.
|
7 |
Szymanowska-Powałowska D, Białas W. Scale-up of anaerobic 1, 3-propanediol production by Clostridium butyricum DSP1 from crude glycerol[J]. BMC Microbiology, 2014, 14: 45.
|
8 |
Wu X, Hou Y Z, Zhang K J, et al. Dynamic optimization of 1, 3-propanediol fermentation process: a switched dynamical system approach[J]. Chinese Journal of Chemical Engineering, 2022, 44: 192-204.
|
9 |
Tsiantis N, Banga J R. Using optimal control to understand complex metabolic pathways[J]. BMC Bioinformatics, 2020, 21(1): 472.
|
10 |
Banga J R. Optimization in computational systems biology[J]. BMC Systems Biology, 2008, 2: 47.
|
11 |
Zeng A P, Ross A, Biebl H, et al. Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation[J]. Biotechnology and Bioengineering, 1994, 44(8): 902-911.
|
12 |
He L, Zhao X B, Cheng K K, et al. Kinetic modeling of fermentative production of 1, 3-propanediol by Klebsiella pneumoniae HR526 with consideration of multiple product inhibitions[J]. Applied Biochemistry and Biotechnology, 2013, 169(1): 312-326.
|
13 |
Kaur G, Srivastava A K, Chand S. Mathematical modelling approach for concentration and productivity enhancement of 1, 3-propanediol using Clostridium diolis [J]. Biochemical Engineering Journal, 2012, 68: 34-41.
|
14 |
Zhang A H, Huang S Y, Zhuang X Y, et al. A novel kinetic model to describe 1, 3-propanediol production fermentation by Clostridium butyricum [J]. AIChE Journal, 2019, 65(6): e16587.
|
15 |
Pan D T, Wang X D, Shi H Y, et al. Ensemble optimization of microbial conversion of glycerol into 1, 3-propanediol by Klebsiella pneumoniae [J]. Journal of Biotechnology, 2019, 301: 68-78.
|
16 |
Zhu C J, Fang B S, Wang S Z. Effects of culture conditions on the kinetic behavior of 1, 3-propanediol fermentation by Clostridium butyricum with a kinetic model[J]. Bioresource Technology, 2016, 212: 130-137.
|
17 |
修志龙, 曾安平, 安利佳. 甘油生物歧化过程动力学数学模拟和多稳态研究[J]. 大连理工大学学报, 2000, 40(4): 428-433.
|
|
Xiu Z L, Zeng A P, An L J. Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1, 3-propanediol[J]. Journal of Dalian University of Technology, 2000, 40(4): 428-433.
|
18 |
Zeng A P, Deckwer W D. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions[J]. Biotechnology Progress, 1995, 11(1): 71-79.
|
19 |
Zeng A P. A kinetic model for product formation of microbial and mammalian cells[J]. Biotechnology and Bioengineering, 1995, 46(4): 314-324.
|
20 |
Wang H Z, Zhang N, Qiu T, et al. Optimization of a continuous fermentation process producing 1, 3-propanediol with Hopf singularity and unstable operating points as constraints[J]. Chemical Engineering Science, 2014, 116: 668-681.
|
21 |
Kaur G, Srivastava A K, Chand S. Bioconversion of glycerol to 1, 3-propanediol: a mathematical model-based nutrient feeding approach for high production using Clostridium diolis [J]. Bioresource Technology, 2013, 142: 82-87.
|
22 |
Ye J X, Xu H L, Feng E M, et al. Optimization of a fed-batch bioreactor for 1, 3-propanediol production using hybrid nonlinear optimal control[J]. Journal of Process Control, 2014, 24(10): 1556-1569.
|
23 |
Yang Q, Wang L, Feng E M, et al. Identification and robustness analysis of nonlinear hybrid dynamical system of genetic regulation in continuous culture[J]. Journal of Industrial & Management Optimization, 2020, 16(2): 579-599.
|
24 |
Tsiantis N, Balsa-Canto E, Banga J R. Optimality and identification of dynamic models in systems biology: an inverse optimal control framework[J]. Bioinformatics, 2018, 34(14): 2433-2440.
|
25 |
秦磊, 俞杰, 宁小钰, 等. 合成生物系统构建与绿色生物“智”造[J]. 化工学报, 2020, 71(9): 3979-3994.
|
|
Qin L, Yu J, Ning X Y, et al. Synthetic biological system construction and green intelligent biological manufacturing[J]. CIESC Journal, 2020, 71(9): 3979-3994.
|
26 |
潘多涛, 史洪岩, 袁德成, 等. 酿酒酵母代谢过程的振荡分析[J]. 化工学报, 2017, 68(3): 964-969.
|
|
Pan D T, Shi H Y, Yuan D C, et al. Analysis of metabolic oscillation processes in Saccharomyces cerevisiae [J]. CIESC Journal, 2017, 68(3): 964-969.
|
27 |
Kuznetsov Y A. Elements of Applied Bifurcation Theory[M]. New York: Springer, 2004.
|
28 |
Roesch E, Stumpf M P H. Parameter inference in dynamical systems with co-dimension 1 bifurcations[J]. Royal Society Open Science, 2019, 6(10): 190747.
|
29 |
Dhooge A, Govaerts W, Kuznetsov Y A, et al. New features of the software MatCont for bifurcation analysis of dynamical systems[J]. Mathematical and Computer Modelling of Dynamical Systems, 2008, 14(2): 147-175.
|
30 |
修志龙. 微生物连续培养过程中多稳态和振荡行为的实验与理论研究[D]. 大连: 大连理工大学, 2000.
|
|
Xiu Z L. Experimental and theoretical study on multiplicity and oscillation in continuous microbial cultures[D]. Dalian: Dalian University of Technology, 2000.
|
31 |
Goldbeter A. Dissipative structures in biological systems: bistability, oscillations, spatial patterns and waves[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 376(2124): 20170376.
|
32 |
孙亚琴. 甘油生物歧化过程酶催化和基因调控的非线性数学模拟与分析[D]. 大连: 大连理工大学, 2010.
|
|
Sun Y Q. Nonlinear mathematical simulation and analysis of enzyme-catalytic kinetics and genetic regulation for glycerol dissimilation by Klebsiella pneumoniae [D]. Dalian: Dalian University of Technology, 2010.
|
33 |
Rombouts J, Gelens L. Dynamic bistable switches enhance robustness and accuracy of cell cycle transitions[J]. PLoS Computational Biology, 2021, 17(1): e1008231.
|
34 |
van Heerden J H, Wortel M T, Bruggeman F J, et al. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells[J]. Science, 2014, 343(6174): 1245114.
|
35 |
Planqué R, Bruggeman F J, Teusink B, et al. Understanding bistability in yeast glycolysis using general properties of metabolic pathways[J]. Mathematical Biosciences, 2014, 255: 33-42.
|
36 |
Kotte O, Volkmer B, Radzikowski J L, et al. Phenotypic bistability in Escherichia coli’s central carbon metabolism[J]. Molecular Systems Biology, 2014, 10(7): 736.
|
37 |
Abegaz F, Martines A C M F, Vieira-Lara M A, et al. Bistability in fatty-acid oxidation resulting from substrate inhibition[J]. PLoS Computational Biology, 2021, 17(8): e1009259.
|
38 |
Markevich N I, Hoek J B, Kholodenko B N. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades[J]. The Journal of Cell Biology, 2004, 164(3): 353-359.
|