CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 3915-3928.DOI: 10.11949/0438-1157.20220578
• Separation engineering • Previous Articles Next Articles
Qian LIU(), Xianglan ZHANG(), Zhiping LI, Yulong LI, Mengxing HAN
Received:
2022-04-24
Revised:
2022-06-05
Online:
2022-10-09
Published:
2022-09-05
Contact:
Xianglan ZHANG
通讯作者:
张香兰
作者简介:
刘潜(1995—),男,博士研究生,460905289@qq.com
基金资助:
CLC Number:
Qian LIU, Xianglan ZHANG, Zhiping LI, Yulong LI, Mengxing HAN. Screening of deep eutectic solvents and study on extraction performance for oil-hydroxybenzene separation[J]. CIESC Journal, 2022, 73(9): 3915-3928.
刘潜, 张香兰, 李志平, 李玉龙, 韩梦醒. 油酚分离过程低共熔溶剂的筛选及萃取性能研究[J]. 化工学报, 2022, 73(9): 3915-3928.
Add to citation manager EndNote|Ris|BibTeX
HBA | HBD | HBA∶HBD(molar ratio) | Abbreviation |
---|---|---|---|
choline chloride | ethylene glycol | 1∶2 | ChCl∶EG (1∶2) |
choline chloride | glycerol | 1∶2 | ChCl∶Gly (1∶2) |
choline chloride | tetraethylene glycol | 1∶3 | ChCl∶TEG (1∶3) |
choline chloride | xylitol | 1∶2 | ChCl∶Xy (1∶2) |
choline chloride | D-sorbitol | 1∶2 | ChCl∶Ds (1∶2) |
choline chloride | 2,2,2-trifluoroacetamide | 1∶2 | ChCl∶TFA (1∶2) |
choline chloride | trifluoroacetic acid | 1∶2 | ChCl∶TrFA (1∶2) |
choline chloride | p-toluenesulfonic acid | 1∶2 | ChCl∶PTSA (1∶2) |
choline chloride | lactic acid | 1∶2 | ChCl∶LA (1∶2) |
choline chloride | lactic acid | 1∶3 | ChCl∶LA (1∶3) |
choline chloride | lactic acid | 1∶4 | ChCl∶LA (1∶4) |
choline chloride | lactic acid | 1∶5 | ChCl∶LA (1∶5) |
choline chloride | lactic acid | 1∶6 | ChCl∶LA (1∶6) |
choline chloride | oxalic acid | 1∶2 | ChCl∶OA (1∶2) |
choline chloride | malonic acid | 1∶2 | ChCl∶MA (1∶2) |
choline chloride | malic acid | 1∶2 | ChCl∶MAA (1∶2) |
choline bromide | glycerol | 1∶2 | ChBr∶Gly (1∶2) |
choline bromide | trifluoroacetic acid | 1∶2 | ChBr∶TrFA (1∶2) |
betaine hydrochloride | glycerol | 1∶2 | BHC∶Gly (1∶2) |
betaine hydrochloride | trifluoroacetic acid | 1∶2 | BHC∶TrFA (1∶2) |
tetraethylammonium chloride | glycerol | 1∶5 | TEAC∶Gly (1∶5) |
tetraethylammonium chloride | D-sorbitol | 1∶3 | TEAC∶Ds (1∶3) |
tetraethylammonium chloride | 2,2,2-trifluoroacetamide | 1∶3 | TEAC∶TFA (1∶3) |
tetraethylammonium chloride | benzoic acid | 1∶4 | TEAC∶BA (1∶4) |
tetraethylammonium chloride | oxalic acid | 1∶3 | TEAC∶OA (1∶3) |
tetraethylammonium bromide | ethylene glycol | 1∶4 | TEAB∶EG (1∶4) |
tetraethylammonium bromide | glycerol | 1∶4 | TEAB∶Gly (1∶4) |
tetraethylammonium bromide | trifluoroacetic acid | 1∶4 | TEAB∶TrFA (1∶4) |
tetraethylammonium bromide | glutaric acid | 1∶4 | TEAB∶GA (1∶4) |
tetraethylammonium bromide | benzoic acid | 1∶4 | TEAB∶BA (1∶4) |
tetraethylammonium bromide | levulinic acid | 1∶4 | TEAB∶LEA (1∶4) |
tetraethylammonium bromide | oxalic acid | 1∶4 | TEAB∶OA (1∶4) |
tetrabutylammonium bromide | ethylene glycol | 1∶4 | TBAB∶EG (1∶4) |
tetrabutylammonium bromide | benzoic acid | 1∶4 | TBAB∶BA (1∶4) |
tetrabutylammonium bromide | levulinic acid | 1∶4 | TBAB∶LEA (1∶4) |
tetrabutylphosphonium bromide | ethylene glycol | 1∶4 | TBPB∶EG (1∶4) |
tetrabutylphosphonium bromide | benzoic acid | 1∶4 | TBPB∶BA (1∶4) |
benzyltrimethylammonium chloride | glycerol | 1∶4 | BTMAC∶Gly (1∶4) |
benzyltrimethylammonium chloride | glycerol | 1∶5 | BTMAC∶Gly (1∶5) |
benzyltrimethylammonium chloride | glycerol | 1∶6 | BTMAC∶Gly (1∶6) |
Table 1 List of deep eutectic solvents screened
HBA | HBD | HBA∶HBD(molar ratio) | Abbreviation |
---|---|---|---|
choline chloride | ethylene glycol | 1∶2 | ChCl∶EG (1∶2) |
choline chloride | glycerol | 1∶2 | ChCl∶Gly (1∶2) |
choline chloride | tetraethylene glycol | 1∶3 | ChCl∶TEG (1∶3) |
choline chloride | xylitol | 1∶2 | ChCl∶Xy (1∶2) |
choline chloride | D-sorbitol | 1∶2 | ChCl∶Ds (1∶2) |
choline chloride | 2,2,2-trifluoroacetamide | 1∶2 | ChCl∶TFA (1∶2) |
choline chloride | trifluoroacetic acid | 1∶2 | ChCl∶TrFA (1∶2) |
choline chloride | p-toluenesulfonic acid | 1∶2 | ChCl∶PTSA (1∶2) |
choline chloride | lactic acid | 1∶2 | ChCl∶LA (1∶2) |
choline chloride | lactic acid | 1∶3 | ChCl∶LA (1∶3) |
choline chloride | lactic acid | 1∶4 | ChCl∶LA (1∶4) |
choline chloride | lactic acid | 1∶5 | ChCl∶LA (1∶5) |
choline chloride | lactic acid | 1∶6 | ChCl∶LA (1∶6) |
choline chloride | oxalic acid | 1∶2 | ChCl∶OA (1∶2) |
choline chloride | malonic acid | 1∶2 | ChCl∶MA (1∶2) |
choline chloride | malic acid | 1∶2 | ChCl∶MAA (1∶2) |
choline bromide | glycerol | 1∶2 | ChBr∶Gly (1∶2) |
choline bromide | trifluoroacetic acid | 1∶2 | ChBr∶TrFA (1∶2) |
betaine hydrochloride | glycerol | 1∶2 | BHC∶Gly (1∶2) |
betaine hydrochloride | trifluoroacetic acid | 1∶2 | BHC∶TrFA (1∶2) |
tetraethylammonium chloride | glycerol | 1∶5 | TEAC∶Gly (1∶5) |
tetraethylammonium chloride | D-sorbitol | 1∶3 | TEAC∶Ds (1∶3) |
tetraethylammonium chloride | 2,2,2-trifluoroacetamide | 1∶3 | TEAC∶TFA (1∶3) |
tetraethylammonium chloride | benzoic acid | 1∶4 | TEAC∶BA (1∶4) |
tetraethylammonium chloride | oxalic acid | 1∶3 | TEAC∶OA (1∶3) |
tetraethylammonium bromide | ethylene glycol | 1∶4 | TEAB∶EG (1∶4) |
tetraethylammonium bromide | glycerol | 1∶4 | TEAB∶Gly (1∶4) |
tetraethylammonium bromide | trifluoroacetic acid | 1∶4 | TEAB∶TrFA (1∶4) |
tetraethylammonium bromide | glutaric acid | 1∶4 | TEAB∶GA (1∶4) |
tetraethylammonium bromide | benzoic acid | 1∶4 | TEAB∶BA (1∶4) |
tetraethylammonium bromide | levulinic acid | 1∶4 | TEAB∶LEA (1∶4) |
tetraethylammonium bromide | oxalic acid | 1∶4 | TEAB∶OA (1∶4) |
tetrabutylammonium bromide | ethylene glycol | 1∶4 | TBAB∶EG (1∶4) |
tetrabutylammonium bromide | benzoic acid | 1∶4 | TBAB∶BA (1∶4) |
tetrabutylammonium bromide | levulinic acid | 1∶4 | TBAB∶LEA (1∶4) |
tetrabutylphosphonium bromide | ethylene glycol | 1∶4 | TBPB∶EG (1∶4) |
tetrabutylphosphonium bromide | benzoic acid | 1∶4 | TBPB∶BA (1∶4) |
benzyltrimethylammonium chloride | glycerol | 1∶4 | BTMAC∶Gly (1∶4) |
benzyltrimethylammonium chloride | glycerol | 1∶5 | BTMAC∶Gly (1∶5) |
benzyltrimethylammonium chloride | glycerol | 1∶6 | BTMAC∶Gly (1∶6) |
Raffinate phase | Extract phase | D | S | ||||
---|---|---|---|---|---|---|---|
w1 | w2 | w3 | w'1 | w'2 | w'3 | ||
1. {[ChCl∶EG (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0041 | 0.9959 | 0.8481 | 0.1241 | 0.0278 | 30.27 | 1083.20 |
0.0000 | 0.0054 | 0.9946 | 0.8099 | 0.1589 | 0.0312 | 29.42 | 936.75 |
0.0003 | 0.0066 | 0.9931 | 0.7768 | 0.1899 | 0.0333 | 28.77 | 856.59 |
0.0006 | 0.0078 | 0.9916 | 0.7426 | 0.2188 | 0.0386 | 28.06 | 721.56 |
0.0012 | 0.0089 | 0.9899 | 0.7103 | 0.2445 | 0.0452 | 27.48 | 602.79 |
0.0022 | 0.0099 | 0.9879 | 0.6810 | 0.2687 | 0.0503 | 27.14 | 532.90 |
0.0031 | 0.0108 | 0.9861 | 0.6530 | 0.2908 | 0.0562 | 26.93 | 473.02 |
0.0039 | 0.0116 | 0.9845 | 0.6265 | 0.3105 | 0.0630 | 26.77 | 418.09 |
2. {[ChCl∶Gly (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0081 | 0.9919 | 0.8561 | 0.1223 | 0.0216 | 15.10 | 694.44 |
0.0001 | 0.0108 | 0.9891 | 0.8194 | 0.1566 | 0.0240 | 14.50 | 596.87 |
0.0005 | 0.0136 | 0.9859 | 0.7860 | 0.1881 | 0.0259 | 13.83 | 526.02 |
0.0009 | 0.0162 | 0.9829 | 0.7530 | 0.2170 | 0.0300 | 13.39 | 439.20 |
0.0017 | 0.0188 | 0.9795 | 0.7227 | 0.2443 | 0.0330 | 12.99 | 385.42 |
0.0029 | 0.0211 | 0.9760 | 0.6911 | 0.2689 | 0.0400 | 12.74 | 310.60 |
0.0041 | 0.0237 | 0.9722 | 0.6626 | 0.2906 | 0.0468 | 12.26 | 254.86 |
0.0056 | 0.0257 | 0.9687 | 0.6333 | 0.3105 | 0.0562 | 12.08 | 208.30 |
3. {[ChCl∶LA (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0086 | 0.9914 | 0.8528 | 0.1226 | 0.0246 | 14.25 | 573.41 |
0.0002 | 0.0115 | 0.9883 | 0.8137 | 0.1568 | 0.0295 | 13.63 | 456.49 |
0.0006 | 0.0141 | 0.9853 | 0.7782 | 0.1862 | 0.0356 | 13.20 | 365.12 |
0.0010 | 0.0168 | 0.9822 | 0.7407 | 0.2155 | 0.0438 | 12.83 | 287.50 |
0.0019 | 0.0195 | 0.9786 | 0.7088 | 0.2408 | 0.0504 | 12.35 | 239.88 |
0.0029 | 0.0219 | 0.9752 | 0.6749 | 0.2636 | 0.0615 | 12.04 | 190.76 |
0.0044 | 0.0241 | 0.9715 | 0.6439 | 0.2830 | 0.0731 | 11.74 | 156.06 |
0.0058 | 0.0260 | 0.9682 | 0.6095 | 0.3002 | 0.0903 | 11.55 | 123.84 |
Table 2 LLE data of {different DESs + m-cresol + cumene} ternary system at 101.3 kPa and 25℃
Raffinate phase | Extract phase | D | S | ||||
---|---|---|---|---|---|---|---|
w1 | w2 | w3 | w'1 | w'2 | w'3 | ||
1. {[ChCl∶EG (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0041 | 0.9959 | 0.8481 | 0.1241 | 0.0278 | 30.27 | 1083.20 |
0.0000 | 0.0054 | 0.9946 | 0.8099 | 0.1589 | 0.0312 | 29.42 | 936.75 |
0.0003 | 0.0066 | 0.9931 | 0.7768 | 0.1899 | 0.0333 | 28.77 | 856.59 |
0.0006 | 0.0078 | 0.9916 | 0.7426 | 0.2188 | 0.0386 | 28.06 | 721.56 |
0.0012 | 0.0089 | 0.9899 | 0.7103 | 0.2445 | 0.0452 | 27.48 | 602.79 |
0.0022 | 0.0099 | 0.9879 | 0.6810 | 0.2687 | 0.0503 | 27.14 | 532.90 |
0.0031 | 0.0108 | 0.9861 | 0.6530 | 0.2908 | 0.0562 | 26.93 | 473.02 |
0.0039 | 0.0116 | 0.9845 | 0.6265 | 0.3105 | 0.0630 | 26.77 | 418.09 |
2. {[ChCl∶Gly (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0081 | 0.9919 | 0.8561 | 0.1223 | 0.0216 | 15.10 | 694.44 |
0.0001 | 0.0108 | 0.9891 | 0.8194 | 0.1566 | 0.0240 | 14.50 | 596.87 |
0.0005 | 0.0136 | 0.9859 | 0.7860 | 0.1881 | 0.0259 | 13.83 | 526.02 |
0.0009 | 0.0162 | 0.9829 | 0.7530 | 0.2170 | 0.0300 | 13.39 | 439.20 |
0.0017 | 0.0188 | 0.9795 | 0.7227 | 0.2443 | 0.0330 | 12.99 | 385.42 |
0.0029 | 0.0211 | 0.9760 | 0.6911 | 0.2689 | 0.0400 | 12.74 | 310.60 |
0.0041 | 0.0237 | 0.9722 | 0.6626 | 0.2906 | 0.0468 | 12.26 | 254.86 |
0.0056 | 0.0257 | 0.9687 | 0.6333 | 0.3105 | 0.0562 | 12.08 | 208.30 |
3. {[ChCl∶LA (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0086 | 0.9914 | 0.8528 | 0.1226 | 0.0246 | 14.25 | 573.41 |
0.0002 | 0.0115 | 0.9883 | 0.8137 | 0.1568 | 0.0295 | 13.63 | 456.49 |
0.0006 | 0.0141 | 0.9853 | 0.7782 | 0.1862 | 0.0356 | 13.20 | 365.12 |
0.0010 | 0.0168 | 0.9822 | 0.7407 | 0.2155 | 0.0438 | 12.83 | 287.50 |
0.0019 | 0.0195 | 0.9786 | 0.7088 | 0.2408 | 0.0504 | 12.35 | 239.88 |
0.0029 | 0.0219 | 0.9752 | 0.6749 | 0.2636 | 0.0615 | 12.04 | 190.76 |
0.0044 | 0.0241 | 0.9715 | 0.6439 | 0.2830 | 0.0731 | 11.74 | 156.06 |
0.0058 | 0.0260 | 0.9682 | 0.6095 | 0.3002 | 0.0903 | 11.55 | 123.84 |
System | Extractant① | T/℃ | η/(mPa·s) | E/% | N/% |
---|---|---|---|---|---|
m-cresol (30%) + cumene (70%) | ChCl∶EG (1∶2) | 25 | 43.87 | 98.41 | 8.41 |
m-cresol (30%) + cumene (70%) | [emim][HSO4]∶EG (1∶2) | 25 | 51.81 | 98.11 | 8.34 |
m-cresol (30%) + cumene (70%) | [emim][HSO4]∶Gly (1∶2) | 25 | 317 | 95.17 | 7.06 |
m-cresol (30%) + cumene (70%) | [emim][HSO4] | 25 | 1172 | 98.25 | 7.28 |
m-cresol (30%) + cumene (70%) | [emim][OAc] | 25 | 132.9 | 99.5 | 26.93 |
m-cresol (30%) + cumene (70%) | [bmim][PF6] | 25 | 366 | 89.59 | 27.67 |
Table 3 Comparison of extraction performance and viscosity with different extractants
System | Extractant① | T/℃ | η/(mPa·s) | E/% | N/% |
---|---|---|---|---|---|
m-cresol (30%) + cumene (70%) | ChCl∶EG (1∶2) | 25 | 43.87 | 98.41 | 8.41 |
m-cresol (30%) + cumene (70%) | [emim][HSO4]∶EG (1∶2) | 25 | 51.81 | 98.11 | 8.34 |
m-cresol (30%) + cumene (70%) | [emim][HSO4]∶Gly (1∶2) | 25 | 317 | 95.17 | 7.06 |
m-cresol (30%) + cumene (70%) | [emim][HSO4] | 25 | 1172 | 98.25 | 7.28 |
m-cresol (30%) + cumene (70%) | [emim][OAc] | 25 | 132.9 | 99.5 | 26.93 |
m-cresol (30%) + cumene (70%) | [bmim][PF6] | 25 | 366 | 89.59 | 27.67 |
1 | Jiao T T, Li C S, Zhuang X L, et al. The new liquid-liquid extraction method for separation of phenolic compounds from coal tar[J]. Chemical Engineering Journal, 2015, 266: 148-155. |
2 | Jiao T T, Wang H Y, Dai F, et al. Thermodynamics study on the separation process of cresols from hexane via deep eutectic solvent formation[J]. Industrial & Engineering Chemistry Research, 2016, 55(32): 8848-8857. |
3 | Gai H J, Qiao L, Zhong C Y, et al. A solvent based separation method for phenolic compounds from low-temperature coal tar[J]. Journal of Cleaner Production, 2019, 223: 1-11. |
4 | 刘潜, 何天琦, 刘小菡, 等. 乙二醇-尿素复配溶剂萃取分离模拟油酚混合物[J]. 化学工业与工程, 2020, 37(4): 23-29. |
Liu Q, He T Q, Liu X H, et al. Extraction of phenolic compounds from model oil with glycol-urea composite extractant[J]. Chemical Industry and Engineering, 2020, 37(4): 23-29. | |
5 | Liu X K, Zhang X L. Solvent screening and liquid-liquid measurement for extraction of phenols from aromatic hydrocarbon mixtures[J]. The Journal of Chemical Thermodynamics, 2019, 129: 12-21. |
6 | Jiao T T, Gong M M, Zhuang X L, et al. A new separation method for phenolic compounds from low-temperature coal tar with urea by complex formation[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 344-348. |
7 | 彭艳枚, 崔现宝, 张缨, 等. 甲醇-乙酸甲酯-1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐的等压汽液平衡[J]. 化学工业与工程, 2013, 30(6): 27-31. |
Peng Y M, Cui X B, Zhang Y, et al. Isobaric vapor-liquid equilibrium for methanol-methyl acetate-1-butyl-3-methylimidazolium bis[(trifluoromethyl) sulfonyl]imide at 101.3 kPa[J]. Chemical Industry and Engineering, 2013, 30(6): 27-31. | |
8 | Hou Y C, Ren Y H, Peng W, et al. Separation of phenols from oil using imidazolium-based ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 18071-18075. |
9 | Yao C F, Hou Y C, Ren S H, et al. Efficient separation of phenolic compounds from model oils by dual-functionalized ionic liquids[J]. Chemical Engineering and Processing-Process Intensification, 2018, 128: 216-222. |
10 | 李文秀, 张羽, 曹颖, 等. 离子液体用于四氢呋喃-乙醇-水三元共沸物系分离的研究[J]. 化工学报, 2020, 71(4): 1676-1682. |
Li W X, Zhang Y, Cao Y, et al. Study on separation of tetrahydrofuran-ethanol-water ternary azeotrope system by ionic liquid[J]. CIESC Journal, 2020, 71(4): 1676-1682. | |
11 | Jiao T T, Qin X Z, Zhang H W, et al. Separation of phenol and pyridine from coal tar via liquid-liquid extraction using deep eutectic solvents[J]. Chemical Engineering Research and Design, 2019, 145: 112-121. |
12 | Li G S, Xie Q, Liu Q, et al. Separation of phenolic compounds from oil mixtures by betaine-based deep eutectic solvents[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(6): e2515. |
13 | Yi L, Feng J, Li W Y, et al. High-performance separation of phenolic compounds from coal-based liquid oil by deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7777-7783. |
14 | Liu Q, Zhang X L. Systematic method of screening deep eutectic solvents as extractive solvents for m-cresol/cumene separation[J]. Separation and Purification Technology, 2022, 291: 120853. |
15 | Song Z, Hu X T, Wu H Y, et al. Systematic screening of deep eutectic solvents as sustainable separation media exemplified by the CO2 capture process[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(23): 8741-8751. |
16 | Lei Z G, Zhang J G, Li Q S, et al. UNIFAC model for ionic liquids[J]. Industrial & Engineering Chemistry Research, 2009, 48(5): 2697-2704. |
17 | Lei Z G, Dai C N, Liu X, et al. Extension of the UNIFAC model for ionic liquids[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 12135-12144. |
18 | 董一春. 离子液体预测型热力学模型及其在萃取精馏分离甲缩醛和甲醇中的应用[D]. 北京: 北京化工大学, 2020. |
Dong Y C. Predictive thermodynamics models for ionic liquids and their application in the separation of methylal and methanol mixture by extractive distillation[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
19 | Chen G Z, Song Z, Qi Z W, et al. Neural recommender system for the activity coefficient prediction and UNIFAC model extension of ionic liquid-solute systems[J]. AIChE Journal, 2021, 67(4): e17171. |
20 | Song Z, Zhang C Y, Qi Z W, et al. Computer-aided design of ionic liquids as solvents for extractive desulfurization[J]. AIChE Journal, 2018, 64(3): 1013-1025. |
21 | Chao H, Song Z, Cheng H Y, et al. Computer-aided design and process evaluation of ionic liquids for n-hexane-methylcyclopentane extractive distillation[J]. Separation and Purification Technology, 2018, 196: 157-165. |
22 | Song Z, Li X X, Chao H, et al. Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process[J]. Green Energy & Environment, 2019, 4(2): 154-165. |
23 | Klamt A, Eckert F. COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids[J]. Fluid Phase Equilibria, 2000, 172(1): 43-72. |
24 | 陈燕鑫, 童赛, 张美景, 等. 基于COSMO-RS模型L-丙氨酸-L-谷胺酰胺结晶溶剂的筛选及其溶液热力学性质研究[J]. 化学工业与工程, 2016, 33(3): 31-38. |
Chen Y X, Tong S, Zhang M J, et al. Solvent screening via COSMO-RS model and measurement of solution thermodynamics for crystallization of N-(2)-L-alanyl-L-glutamine[J]. Chemical Industry and Engineering, 2016, 33(3): 31-38. | |
25 | 刘潜, 张香兰, 李巍. 基于COSMO-RS模型的分离油酚混合物的离子液体萃取剂筛选[J]. 化工学报, 2018, 69(12): 5100-5111. |
Liu Q, Zhang X L, Li W. Screening ionic liquids solvent for separation of oil and hydroxybenzene mixtures based on COSMO-RS model[J]. CIESC Journal, 2018, 69(12): 5100-5111. | |
26 | Hizaddin H F, Ramalingam A, Hashim M A, et al. Evaluating the performance of deep eutectic solvents for use in extractive denitrification of liquid fuels by the conductor-like screening model for real solvents[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3470-3487. |
27 | Hadj-Kali M K, Hizaddin H F, Wazeer I, et al. Liquid-liquid separation of azeotropic mixtures of ethanol/alkanes using deep eutectic solvents: COSMO-RS prediction and experimental validation[J]. Fluid Phase Equilibria, 2017, 448: 105-115. |
28 | 成洪业, 漆志文. 低共熔溶剂用于萃取分离的研究进展[J]. 化工进展, 2020, 39(12): 4896-4907. |
Cheng H Y, Qi Z W. Research progress of deep eutectic solvent for extractive separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4896-4907. | |
29 | 吴明尧. 基于季铵盐低共熔溶剂的柑橘精油脱萜过程研究[D]. 上海: 华东理工大学, 2021. |
Wu M Y. Extractive deterpenation of citrus essential oils using quaternary ammonium-based deep eutectic solvents[D]. Shanghai: East China University of Science and Technology, 2021. | |
30 | 张志刚, 张德彪, 张亲亲, 等. 基于COSMO-RS方法筛选离子液体分离乙酸乙酯-乙腈共沸物[J]. 化工学报, 2019, 70(1): 146-153. |
Zhang Z G, Zhang D B, Zhang Q Q, et al. Screening of ionic liquids for separation of ethyl acetate-acetonitrile azeotrope based on COSMO-RS[J]. CIESC Journal, 2019, 70(1): 146-153. | |
31 | 李军芳, 毛学锋, 胡发亭. 中低温煤焦油酚油馏分中酚类化合物的组成[J]. 煤炭转化, 2019, 42(2): 32-38. |
Li J F, Mao X F, Hu F T. Composition of phenolic compounds in phenol oil distillate of medium and low temperature coal tar[J]. Coal Conversion, 2019, 42(2): 32-38. | |
32 | 易兰. 煤直接转化液体产物中芳香族化合物缔合结构解析与组分分离[D]. 杭州: 浙江大学, 2020. |
Yi L. Association structure analysis and component separation of aromatic compounds in liquid products from direct coal conversion[D]. Hangzhou: Zhejiang University, 2020. | |
33 | Ji Y A, Hou Y C, Ren S H, et al. Highly efficient separation of phenolic compounds from oil mixtures by imidazolium-based dicationic ionic liquids via forming deep eutectic solvents[J]. Energy & Fuels, 2017, 31(9): 10274-10282. |
34 | Liu Q, Zhang X L, Li W. Separation of m-cresol from aromatic hydrocarbon and alkane using ionic liquids via hydrogen bond interaction[J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2675-2686. |
35 | 李明宴, 李进龙, 彭昌军, 等. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053. |
Li M Y, Li J L, Peng C J, et al. The effect of ionic liquids on the vapor-liquid equilibrium of ammonia-water solution by the COSMO-SAC[J]. CIESC Journal, 2022, 73(3): 1044-1053. | |
36 | Salleh Z, Wazeer I, Mulyono S, et al. Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents-COSMO-RS screening and experimental validation[J]. The Journal of Chemical Thermodynamics, 2017, 104: 33-44. |
37 | Cheng H Y, Liu C Y, Zhang J J, et al. Screening deep eutectic solvents for extractive desulfurization of fuel based on COSMO-RS model[J]. Chemical Engineering and Processing-Process Intensification, 2018, 125: 246-252. |
38 | Wu Z M, Liu C Y, Cheng H Y, et al. Tuned extraction and regeneration process for separation of hydrophobic compounds by aqueous ionic liquid[J]. Journal of Molecular Liquids, 2020, 308: 113032. |
39 | Yao C F, Hou Y C, Ren S H, et al. Selective extraction of aromatics from aliphatics using dicationic ionic liquid-solvent composite extractants[J]. Journal of Molecular Liquids, 2019, 291: 111267. |
40 | 方静, 张淑婷, 李婷婷, 等. 离子液体用于燃油萃取脱硫的选择与过程优化[J]. 化工学报, 2017, 68(9): 3434-3441. |
Fang J, Zhang S T, Li T T, et al. Selection and process optimization of ionic liquids for desulfurization[J]. CIESC Journal, 2017, 68(9): 3434-3441. | |
41 | Yao C F, Hou Y C, Ren S H, et al. Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents[J]. Chemical Engineering Journal, 2017, 326: 620-626. |
42 | Ji Y A, Hou Y C, Ren S H, et al. Separation of phenolic compounds from oil mixtures using environmentally benign biological reagents based on Brønsted acid-Lewis base interaction[J]. Fuel, 2019, 239: 926-934. |
43 | Wu Z M, Zeng Q, Cheng H Y, et al. Extractive separation of tetralin-dodecane mixture using tetrabutylphosphonium bromide-based deep eutectic solvent[J]. Chemical Engineering and Processing-Process Intensification, 2020, 149: 107822. |
44 | Guo W J, Hou Y C, Wu W Z, et al. Separation of phenol from model oils with quaternary ammonium salts via forming deep eutectic solvents[J]. Green Chemistry, 2013, 15(1): 226-229. |
45 | Liu Q, Zhang X L. Highly efficient separation of phenolic compounds from low-temperature coal tar by composite extractants with low viscosity[J]. Journal of Molecular Liquids, 2022, 360: 119417. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[3] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[4] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[5] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[6] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[7] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[8] | Xiangshang CHEN, Zhenjie MA, Xihua REN, Yue JIA, Xiaolong LYU, Huayan CHEN. Preparation and mass transfer efficiency of three-dimensional network extraction membrane [J]. CIESC Journal, 2023, 74(3): 1126-1133. |
[9] | Jingbo GAO, Qiang SUN, Qing LI, Yiwei WANG, Xuqiang GUO. Hydrate equilibrium model of hydrogen-containing gas considering hydrates structure transformation [J]. CIESC Journal, 2023, 74(2): 666-673. |
[10] | Jin CAI, Xiaohui WANG, Han TANG, Guangjin CHEN, Changyu SUN. Prediction of the phase equilibrium of semi-clathrate hydrate in TBAB aqueous solution [J]. CIESC Journal, 2023, 74(1): 408-415. |
[11] | Huan ZHOU, Mengli ZHANG, Qing HAO, Si WU, Jie LI, Cunbing XU. Process mechanism and dynamic behaviors of magnesium sulfate type carnallite converting into kainite [J]. CIESC Journal, 2022, 73(9): 3841-3850. |
[12] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[13] | Luyue HUANG, Chang LIU, Yongyi XU, Haoruo XING, Feng WANG, Shuangchen MA. Development of CDI two-dimensional concentration mass transfer model and experimental validation [J]. CIESC Journal, 2022, 73(7): 2933-2943. |
[14] | Chenyu SU, Ying YANG, Xingfu SONG. Selective electro-oxidation of bromide ion in potassium-extracted brine from rock salt mines [J]. CIESC Journal, 2022, 73(7): 3007-3017. |
[15] | Chunhui LI, Hui HE, Mingjian HE, Meng ZHANG, Yang GAO, Caishan JIAO. Extraction kinetics of Ce(Ⅳ) from nitric acid solutions using ionic liquid [J]. CIESC Journal, 2022, 73(4): 1606-1614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||