CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4252-4266.DOI: 10.11949/0438-1157.20230747
• Energy and environmental engineering • Previous Articles Next Articles
Jinpeng ZHANG(), Qiang WANG, Yanmei WANG, Shu YAN, Jianbo WU, Hui ZHANG, Hongcun BAI()
Received:
2023-07-18
Revised:
2023-09-09
Online:
2023-12-22
Published:
2023-10-25
Contact:
Hongcun BAI
张金鹏(), 王强, 王艳美, 严舒, 吴建波, 张慧, 白红存()
通讯作者:
白红存
作者简介:
张金鹏(1997—),女,硕士研究生,2719659225@qq.com
基金资助:
CLC Number:
Jinpeng ZHANG, Qiang WANG, Yanmei WANG, Shu YAN, Jianbo WU, Hui ZHANG, Hongcun BAI. Molecular structure evolution characteristics and comparative analysis of Ningxia QH and YCW coal with nickel based oxygen carriers during chemical looping combustion[J]. CIESC Journal, 2023, 74(10): 4252-4266.
张金鹏, 王强, 王艳美, 严舒, 吴建波, 张慧, 白红存. 镍基载氧体化学链燃烧过程中宁夏QH和YCW煤分子结构演化特征及对比分析[J]. 化工学报, 2023, 74(10): 4252-4266.
Add to citation manager EndNote|Ris|BibTeX
Energy | QH-NiO | YCW-NiO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2.50 ps | 141.29 ps | 149.98 ps | 177.94 ps | 206.23 ps | 2.50 ps | 162.51 ps | 181.46 ps | 189.10 ps | 200.94 ps | |
Ebond | -405260.85 | -400409.50 | -399647.46 | -396741.22 | -394454.47 | -420824.09 | -407444.97 | -412548.95 | -410458.40 | -413046.51 |
Eatom | 35249.16 | 35397.52 | 35632.76 | 36320.55 | 39013.04 | 34721.43 | 37434.80 | 41389.81 | 40327.19 | 40923.38 |
Elp | 0.00 | 8.70 | 58.17 | 222.48 | 231.12 | -0.01 | 561.10 | 417.12 | 216.32 | 246.01 |
Eval | 21632.75 | 20827.14 | 20355.03 | 19733.17 | 18679.09 | 22725.43 | 20052.98 | 18624.00 | 17786.54 | 17722.19 |
Ecoa | -5.39 | -61.85 | -51.43 | -66.65 | -59.89 | -34.62 | -53.74 | -36.77 | -39.40 | -35.07 |
Etors | 602.57 | 610.94 | 527.79 | 476.79 | 71.04 | 784.46 | 218.47 | 65.34 | 90.15 | 73.61 |
Econj | -965.63 | -596.13 | -574.40 | -289.33 | -19.07 | -1060.33 | -69.42 | -16.50 | -18.75 | -23.55 |
EV | -348747.39 | -344223.18 | -343699.54 | -340344.20 | -336539.14 | -363687.74 | -881784.93 | -880421.04 | -879689.20 | -878713.62 |
Ehbo | -0.09 | -47.08 | -71.90 | -90.64 | -109.79 | -16.57 | -135.38 | -156.66 | -160.24 | -145.57 |
Evdw | 82260.99 | 79920.48 | 78467.16 | 76039.78 | 73536.67 | 85920.63 | 76732.80 | 76378.11 | 75893.95 | 77186.78 |
Ecoul | -41279.20 | -38711.20 | -38727.26 | -39177.34 | -39485.44 | -39898.09 | -41235.77 | -41107.65 | -40451.18 | -40284.27 |
Echarge | 21614.07 | 19485.45 | 19431.56 | 19595.35 | 19735.52 | 20240.72 | 20841.27 | 20707.00 | 20176.55 | 20094.77 |
EN | 62595.78 | 60647.64 | 59099.56 | 56367.15 | 53676.96 | 66246.69 | 56202.92 | 55820.81 | 55459.07 | 56851.71 |
Esystem | -286151.61 | -283575.54 | -284599.99 | -283977.04 | -282862.18 | -297441.04 | -825582.01 | -824600.23 | -824230.13 | -821861.91 |
Table 1 Energy decomposition analysis of QH-NiO and YCW-NiO endothermic peak during CLC process at 2500 K
Energy | QH-NiO | YCW-NiO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2.50 ps | 141.29 ps | 149.98 ps | 177.94 ps | 206.23 ps | 2.50 ps | 162.51 ps | 181.46 ps | 189.10 ps | 200.94 ps | |
Ebond | -405260.85 | -400409.50 | -399647.46 | -396741.22 | -394454.47 | -420824.09 | -407444.97 | -412548.95 | -410458.40 | -413046.51 |
Eatom | 35249.16 | 35397.52 | 35632.76 | 36320.55 | 39013.04 | 34721.43 | 37434.80 | 41389.81 | 40327.19 | 40923.38 |
Elp | 0.00 | 8.70 | 58.17 | 222.48 | 231.12 | -0.01 | 561.10 | 417.12 | 216.32 | 246.01 |
Eval | 21632.75 | 20827.14 | 20355.03 | 19733.17 | 18679.09 | 22725.43 | 20052.98 | 18624.00 | 17786.54 | 17722.19 |
Ecoa | -5.39 | -61.85 | -51.43 | -66.65 | -59.89 | -34.62 | -53.74 | -36.77 | -39.40 | -35.07 |
Etors | 602.57 | 610.94 | 527.79 | 476.79 | 71.04 | 784.46 | 218.47 | 65.34 | 90.15 | 73.61 |
Econj | -965.63 | -596.13 | -574.40 | -289.33 | -19.07 | -1060.33 | -69.42 | -16.50 | -18.75 | -23.55 |
EV | -348747.39 | -344223.18 | -343699.54 | -340344.20 | -336539.14 | -363687.74 | -881784.93 | -880421.04 | -879689.20 | -878713.62 |
Ehbo | -0.09 | -47.08 | -71.90 | -90.64 | -109.79 | -16.57 | -135.38 | -156.66 | -160.24 | -145.57 |
Evdw | 82260.99 | 79920.48 | 78467.16 | 76039.78 | 73536.67 | 85920.63 | 76732.80 | 76378.11 | 75893.95 | 77186.78 |
Ecoul | -41279.20 | -38711.20 | -38727.26 | -39177.34 | -39485.44 | -39898.09 | -41235.77 | -41107.65 | -40451.18 | -40284.27 |
Echarge | 21614.07 | 19485.45 | 19431.56 | 19595.35 | 19735.52 | 20240.72 | 20841.27 | 20707.00 | 20176.55 | 20094.77 |
EN | 62595.78 | 60647.64 | 59099.56 | 56367.15 | 53676.96 | 66246.69 | 56202.92 | 55820.81 | 55459.07 | 56851.71 |
Esystem | -286151.61 | -283575.54 | -284599.99 | -283977.04 | -282862.18 | -297441.04 | -825582.01 | -824600.23 | -824230.13 | -821861.91 |
Time/ps | Number of QH-NiO oxygen release | Number of YCW-NiO oxygen release | ||||||
---|---|---|---|---|---|---|---|---|
1st and 6th layer | 2nd and 5th layer | 3rd and 4th layer | Sum of a period | 1st and 6th layer | 2nd and 5th layer | 3rd and 4th layer | Sum of a period | |
0—50 | 29(7.25%) | 27(6.75%) | 18(4.50%) | 74(6.17%) | 23(5.75%) | 19(4.75%) | 14(3.50%) | 57(4.75%) |
50—100 | 13(3.25%) | 10(2.50%) | 9(2.25%) | 32(2.67%) | 14(3.50%) | 16(4.00%) | 15(3.75%) | 45(3.75%) |
100—150 | 10(2.50%) | 7(1.75%) | 7(1.75%) | 24(2.00%) | 14(3.50%) | 9(2.25%) | 11(2.75%) | 34(2.83%) |
150—200 | 14(3.50%) | 25(6.25%) | 34(8.50%) | 73(6.08%) | 38(9.50%) | 35(8.75%) | 45(11.25%) | 118(9.83%) |
200—250 | 34(8.50%) | 24(6.00%) | 35(8.75%) | 93(7.75%) | 26(6.50%) | 19(4.75%) | 19(4.75%) | 64(5.33%) |
Sum of layers | 100(25.00%) | 93(23.25%) | 103(25.75%) | 296(24.67%) | 115(28.75%) | 98(24.5%) | 105(26.25%) | 318(26.50%) |
Table 2 The amounts of QH-NiO and YCW-NiO lattice oxygen release during CLC at 2500 K
Time/ps | Number of QH-NiO oxygen release | Number of YCW-NiO oxygen release | ||||||
---|---|---|---|---|---|---|---|---|
1st and 6th layer | 2nd and 5th layer | 3rd and 4th layer | Sum of a period | 1st and 6th layer | 2nd and 5th layer | 3rd and 4th layer | Sum of a period | |
0—50 | 29(7.25%) | 27(6.75%) | 18(4.50%) | 74(6.17%) | 23(5.75%) | 19(4.75%) | 14(3.50%) | 57(4.75%) |
50—100 | 13(3.25%) | 10(2.50%) | 9(2.25%) | 32(2.67%) | 14(3.50%) | 16(4.00%) | 15(3.75%) | 45(3.75%) |
100—150 | 10(2.50%) | 7(1.75%) | 7(1.75%) | 24(2.00%) | 14(3.50%) | 9(2.25%) | 11(2.75%) | 34(2.83%) |
150—200 | 14(3.50%) | 25(6.25%) | 34(8.50%) | 73(6.08%) | 38(9.50%) | 35(8.75%) | 45(11.25%) | 118(9.83%) |
200—250 | 34(8.50%) | 24(6.00%) | 35(8.75%) | 93(7.75%) | 26(6.50%) | 19(4.75%) | 19(4.75%) | 64(5.33%) |
Sum of layers | 100(25.00%) | 93(23.25%) | 103(25.75%) | 296(24.67%) | 115(28.75%) | 98(24.5%) | 105(26.25%) | 318(26.50%) |
1 | Liu D Y, Wang C R, Fan Y P, et al. Mercury transformation and removal in chemical looping combustion of coal: a review[J]. Fuel, 2023, 347: 128440. |
2 | Fan L S, Zeng L, Wang W, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion—prospect and opportunity[J]. Energy & Environmental Science, 2012, 5(6): 7254-7280. |
3 | Richter H J, Knoche K F. Reversibility of combustion processes[M]//Gaggioli R A. ACS Symposium Series. Washington, D.C.: American Chemical Society, 1983: 71-85. |
4 | Wang B W, Wang W S, Ma Q A, et al. In-depth investigation of chemical looping combustion of a Chinese bituminous coal with CuFe2O4 combined oxygen carrier[J]. Energy & Fuels, 2016, 30(3): 2285-2294. |
5 | Liu T, Yu Z L, Jiao F C, et al. Effect of preparation conditions on the performance of K-decorated Fe2O3/Al2O3 oxygen carrier (OC) in chemical looping conversion of coal process with deep OC reduction[J]. Journal of the Energy Institute, 2021, 98: 179-187. |
6 | Yan J C, Shen T X, Wang P, et al. Redox performance of manganese ore in a fluidized bed thermogravimetric analyzer for chemical looping combustion[J]. Fuel, 2021, 295: 120564. |
7 | Miao Z W, Shen L H, Li Z S, et al. Sintering and agglomeration characteristics of industrially prepared CaMn0.5Ti0.375Fe0.125O3- δ perovskite oxygen carrier in chemical looping combustion[J]. Chemical Engineering Journal, 2023, 472: 144722. |
8 | Daneshmand-Jahromi S, Sedghkerdar M H, Mahinpey N. A review of chemical looping combustion technology: fundamentals, and development of natural, industrial waste, and synthetic oxygen carriers[J]. Fuel, 2023, 341: 127626. |
9 | Chen H, Cheng M, Liu L, et al. Coal-fired chemical looping combustion coupled with a high-efficiency annular carbon stripper[J]. International Journal of Greenhouse Gas Control, 2020, 93: 102889. |
10 | Xiao R, Chen L Y, Saha C, et al. Pressurized chemical-looping combustion of coal using an iron ore as oxygen carrier in a pilot-scale unit[J]. International Journal of Greenhouse Gas Control, 2012, 10: 363-373. |
11 | Bayham S, McGiveron O, Tong A, et al. Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal[J]. Applied Energy, 2015, 145: 354-363. |
12 | Berguerand N, Lyngfelt A. Design and operation of a 10 kWth chemical-looping combustor for solid fuels—testing with South African coal[J]. Fuel, 2008, 87(12): 2713-2726. |
13 | Ma J C, Zhao H B, Tian X, et al. Chemical looping combustion of coal in a 3 kWth interconnected fluidized bed reactor using hematite as oxygen carrier[J]. Applied Energy, 2015, 157: 304-313. |
14 | 袁鹏星, 郭庆杰, 胡修德, 等. 3 MWth煤化学链气化商业示范装置的自热运行和参数分析[J]. 过程工程学报, 2023, 23(4): 616-626. |
Yuan P X, Guo Q J, Hu X D, et al. Autothermal operation and parametric analysis of commercial demonstration unit of 3 MWth coal chemical looping gasification[J]. The Chinese Journal of Process Engineering, 2023, 23(4): 616-626. | |
15 | 沈天绪, 沈来宏. 基于3 kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
Shen T X, Shen L H. Investigation of multi-fuel chemical looping combustion in a 3 kW interconnected fluidized bed reactors[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 138-147. | |
16 | Mathews J P, Chaffee A L. The molecular representations of coal—a review[J]. Fuel, 2012, 96: 1-14. |
17 | Shi K Y, Gui X H, Tao X X, et al. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy & Fuels, 2015, 29(6): 3566-3572. |
18 | Yang Z Y, Yin Z Q, Xue W Y, et al. Construction of buertai coal macromolecular model and GCMC simulation of methane adsorption in micropores[J]. ACS Omega, 2021, 6(17): 11173-11182. |
19 | Ding C, Li Z X, Hu D J, et al. Construction of macromolecular model and analysis of oxygen absorption characteristics of Hongyang No. 2 coal mine[J]. Arabian Journal of Chemistry, 2023, 16(5): 104662. |
20 | Xiang J H, Zeng F G, Liang H Z, et al. Model construction of the macromolecular structure of Yanzhou Coal and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(7): 481-488. |
21 | Liu S H, Wei L H, Zhou Q, et al. Simulation strategies for ReaxFF molecular dynamics in coal pyrolysis applications: a review[J]. Journal of Analytical and Applied Pyrolysis, 2023, 170: 105882. |
22 | Hong D K, Guo X. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210: 58-66. |
23 | Zhang K, Li Y, Wang Z H, et al. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel, 2016, 185: 701-708. |
24 | Wang Y H, Lian J, Xue Y, et al. The pyrolysis of vitrinite and inertinite by a combination of quantum chemistry calculation and thermogravimetry-mass spectrometry[J]. Fuel, 2020, 264: 116794. |
25 | Burger C M, Zhang A J, Xu Y J, et al. Plasma-assisted chemical-looping combustion: low-temperature methane and ethylene oxidation with nickel oxide[J]. The Journal of Physical Chemistry A, 2023, 127(3): 789-798. |
26 | 王翠苹, 梁文政, 王坤, 等. 基于铁基载氧体的污泥化学结构热解分子动力学模拟[J]. 洁净煤技术, 2022, 28(3): 139-149. |
Wang C P, Liang W Z, Wang K, et al. Molecular dynamics simulation of chemical structure pyrolysis of sludge based on iron-based oxygen carrier[J]. Clean Coal Technology, 2022, 28(3): 139-149. | |
27 | Meng L L, Zhu Y, Zhu M L, et al. Exploring depolymerization mechanism and complex reaction networks of aromatic structures in chemical looping combustion via ReaxFF MD simulations[J]. Journal of the Energy Institute, 2023, 107: 101180. |
28 | 郭文倩, 蒙亮亮, 耿畅, 等. 铁基载氧体纤维素化学链解聚试验及分子模拟[J]. 洁净煤技术, 2023, 29(4): 137-147. |
Guo W Q, Meng L L, Geng C, et al. Experiment and molecular simulation of cellulose during chemical looping depolymerization with iron-based oxygen carriers[J]. Clean Coal Technology, 2023, 29(4): 137-147. | |
29 | 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 176-180. |
Xie K C. Coal Structure and Its Reactivity[M]. Beijing: Science Press, 2002: 176-180. | |
30 | Wang Q, Zhang J P, Li H N, et al. Exploring molecular structure characteristics and chemical index of Qinghua bituminous coal: a comprehensive insight from single molecule of macerals to particles with various sizes[J]. Powder Technology, 2022, 396: 36-49. |
31 | 王强, 毛宁, 杨妍, 等. 宁夏庆华煤镜质组和惰质组显微组分的分子结构及对比分析[J]. 化工进展, 2020, 39(S2): 142-151. |
Wang Q, Mao N, Yang Y, et al. Molecular structures and comparative analysis of macerals of vitrinite and inertinite for Qinghua coal, Ningxia[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 142-151. | |
32 | Zhang J P, Wang Y M, Feng W, et al. Insights into the molecular structure of Yangchangwan subbituminous coal based on the combination of experimental and multi-scale computational descriptions[J]. Solid Fuel Chemistry, 2022, 56(1): 67-77. |
33 | Li Z M, Zhu Y, Li N, et al. Revealing reactive mechanism and nitrogen transformation of HSW coal combustions at molecule and particle scales[J]. Powder Technology, 2023, 419: 118368. |
34 | Wang B W, Cao Y M, Li J, et al. Migration and redistribution of sulfur species during chemical looping combustion of coal with CuFe2O4 combined oxygen carrier [J]. Energy & Fuels, 2016, 30(10): 8499-8510. |
35 | Hong D K, Liu L, Wang C B, et al. Construction of a coal char model and its combustion and gasification characteristics: molecular dynamic simulations based on ReaxFF[J]. Fuel, 2021, 300: 120972. |
36 | 王旭锋, 刘晶, 刘丰, 等. 基于CoFe2O4载氧体的生物质化学链气化反应特性[J]. 化工学报, 2019, 70(4): 1583-1590. |
Wang X F, Liu J, Liu F, et al. Characteristics of biomass chemical looping gasification with CoFe2O4 as oxygen carrier[J]. CIESC Journal, 2019, 70(4): 1583-1590. | |
37 | Mao N, Bai H C, Geng C, et al. Insights into the micro-structures and reactive behaviors of coal vitrinite and inertinite macerals with CuFe2O4 in chemical looping combustion[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102164. |
38 | Russo M F, van Duin A C T. Atomistic-scale simulations of chemical reactions: bridging from quantum chemistry to engineering[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2011, 269(14): 1549-1554. |
39 | Shin Y K, Kwak H, Zou C Y, et al. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation[J]. The Journal of Physical Chemistry A, 2012, 116(49): 12163-12174. |
40 | Sorensen M R, Voter A F. Temperature-accelerated dynamics for simulation of infrequent events[J]. The Journal of Chemical Physics, 2000, 112(21): 9599-9606. |
41 | Senftle T P, Hong S, Islam M M, et al. The ReaxFF reactive force-field: development, applications and future directions[J]. NPJ Computational Materials, 2016, 2: 15011. |
42 | 袁妮妮, 郭拓, 白红存, 等. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
Yuan N N, Guo T, Bai H C, et al. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation[J]. CIESC Journal, 2022, 73(9): 4054-4061. | |
43 | Burger C M, Zhu W B, Ma G M, et al. Experimental and computational investigations of ethane and ethylene kinetics with copper oxide particles for chemical looping combustion[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5249-5257. |
44 | Zhan J H, Wu R C, Liu X X, et al. Preliminary understanding of initial reaction process for subbituminous coal pyrolysis with molecular dynamics simulation[J]. Fuel, 2014, 134: 283-292. |
45 | Lian L L, Qin Z H, Li C S, et al. Molecular model construction of the dense medium component scaffold in coal for molecular aggregate simulation[J]. ACS Omega, 2020, 5(22): 13375-13383. |
46 | 张帅, 肖睿. 煤的结构对化学链燃烧系统反应性能的影响[J]. 中国电机工程学报, 2019, 39(18): 5449-5456. |
Zhang S, Xiao R. Effect of coal structure on the reaction performance of coal-fueled chemical looping combustion system[J]. Proceedings of the CSEE, 2019, 39(18): 5449-5456. | |
47 | Zhong Q F, Mao Q Y, Xiao J, et al. Sulfur removal from petroleum coke during high-temperature pyrolysis. Analysis from TG-MS data and ReaxFF simulations[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 134-142. |
48 | Zheng M, Li X X, Liu J A, et al. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy & Fuels, 2013, 27(6): 2942-2951. |
49 | Chang H Z, Deng H X, Yang Q, et al. Investigation of the interaction between vitrinite and inertinite of Xinjiang Wucaiwan coal in pyrolysis by ReaxFF molecular dynamics simulation[J]. Fuel Communications, 2019, 1: 100001. |
50 | Retcofsky H L. Magnetic resonance: introduction, advanced topics and applications to fossil energy[J]. Fuel, 1985, 64(9): 1334. |
51 | Zheng M, Pan Y, Wang Z, et al. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments[J]. Fuel, 2020, 268: 117290. |
52 | 高正平, 沈来宏, 肖军. 基于NiO载氧体的煤化学链燃烧实验[J]. 化工学报, 2008, 59(5): 1242-1250. |
Gao Z P, Shen L H, Xiao J. Chemical looping combustion of coal based on NiO oxygen carrier[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(5): 1242-1250. | |
53 | Siriwardane R, Tian H J, Richards G, et al. Chemical-looping combustion of coal with metal oxide oxygen carriers[J]. Energy & Fuels, 2009, 23(8): 3885-3892. |
54 | Zhong Q F, Zhang Y, Shabnam S, et al. Reductive gaseous (H2/NH3) desulfurization and gasification of high-sulfur petroleum coke via reactive force field molecular dynamics simulations[J]. Energy & Fuels, 2019, 33(9): 8065-8075. |
55 | Zhong Q F, Mao Q Y, Xiao J, et al. ReaxFF simulations of petroleum coke sulfur removal mechanisms during pyrolysis and combustion[J]. Combustion and Flame, 2018, 198: 146-157. |
56 | Zhang J P, Zhang H, Yuan N N, et al. Insights into reactive behaviors and mechanisms of nickel-based oxygen carriers doped by Fe/Co during chemical looping combustion from multiple-scale molecular modeling combined with experiments[J]. Fuel Processing Technology, 2022, 229: 107181. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[10] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[13] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[14] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[15] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||