CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 893-903.DOI: 10.11949/0438-1157.20221406
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Jinlin MENG(), Yu WANG, Qunfeng ZHANG, Guanghua YE(), Xinggui ZHOU
Received:
2022-11-30
Revised:
2022-12-20
Online:
2023-03-21
Published:
2023-02-05
Contact:
Guanghua YE
通讯作者:
叶光华
作者简介:
孟金琳(1997—),男,硕士研究生,Y30200055@mail.ecust.edu.cn
基金资助:
CLC Number:
Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials[J]. CIESC Journal, 2023, 74(2): 893-903.
孟金琳, 汪宇, 张群锋, 叶光华, 周兴贵. 介孔材料低温氮气吸脱附的孔道网络模型[J]. 化工学报, 2023, 74(2): 893-903.
Add to citation manager EndNote|Ris|BibTeX
参数或变量 | 数值 |
---|---|
氮气吸脱附温度(T)/K | 77 |
氮气临界温度(Tc)/K | 126 |
液氮密度(ρ)/( kg/m3) | 807 |
吸脱附相对压力区间(P/P0) | 0.10~0.95 |
平均孔径(dp)/nm | 5~20 |
孔径分布标准偏差(σ) | 0.2~0.8 |
孔道连通性(Z) | 4~8 |
Table 1 Model parameters and variables used in this work
参数或变量 | 数值 |
---|---|
氮气吸脱附温度(T)/K | 77 |
氮气临界温度(Tc)/K | 126 |
液氮密度(ρ)/( kg/m3) | 807 |
吸脱附相对压力区间(P/P0) | 0.10~0.95 |
平均孔径(dp)/nm | 5~20 |
孔径分布标准偏差(σ) | 0.2~0.8 |
孔道连通性(Z) | 4~8 |
1 | 李三妹, 陕绍云, 贾庆明, 等. 介孔分子筛改性研究进展[J]. 硅酸盐通报, 2013, 32(6): 1082-1086. |
Li S M, Shan S Y, Jia Q M, et al. Process on modified mesoporous molecular sieve[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(6): 1082-1086. | |
2 | 耿旺昌, 吉志强, 张秋禹. 介孔金属氧化物的研究进展[J]. 材料导报, 2010, 24(7): 16-19. |
Geng W C, Ji Z Q, Zhang Q Y. Research progress of mesoporous metal oxides[J]. Materials Reports, 2010, 24(7): 16-19. | |
3 | 张宁, 李育珍, 夏云生, 等. 介孔碳材料的制备、功能化与应用研究进展[J]. 化学研究与应用, 2018, 30(7): 1048-1056. |
Zhang N, Li Y Z, Xia Y S, et al. Preparation, functionalization and application of mesoporous carbon materials[J]. Chemical Research and Application, 2018, 30(7): 1048-1056. | |
4 | Linares N, Silvestre-Albero A M, Serrano E, et al. Mesoporous materials for clean energy technologies[J]. Chemical Society Reviews, 2014, 43(22): 7681-7717. |
5 | 梁振金, 洪梓博, 解明月, 等. 介孔炭材料应用于电化学催化的研究进展[J]. 新型炭材料, 2022, 37(1): 152-179. |
Liang Z J, Hong Z B, Xie M Y, et al. Recent progress on mesoporous carbon materials used in electrochemical catalysis[J]. New Carbon Materials, 2022, 37(1): 152-179. | |
6 | 李刚, 华绍广, 吴将有. 硅基介孔材料及其改性对SO2的吸附效能研究[J]. 化学工程, 2020, 48(12): 25-30, 36. |
Li G, Hua S G, Wu J Y. Adsorption efficiency of silica-based mesoporous materials and their modifications on sulfur dioxide[J]. Chemical Engineering (China), 2020, 48(12): 25-30, 36. | |
7 | 张文君, 梁喜龙, 吕江维, 等. 周期性介孔有机硅的合成及在生物医药领域的应用进展[J]. 精细化工, 2022, 39(2): 236-246. |
Zhang W J, Liang X L, Lyu J W, et al. Synthesis and biomedicine application progress of periodic mesoporous organosilicas[J]. Fine Chemicals, 2022, 39(2): 236-246. | |
8 | Zhao C, Danish E, Cameron N R, et al. Emulsion-templated porous materials (PolyHIPEs) for selective ion and molecular recognition and transport: applications in electrochemical sensing[J]. Journal of Materials Chemistry, 2007, 17(23): 2446-2453. |
9 | Wargo E A, Kotaka T, Tabuchi Y, et al. Comparison of focused ion beam versus nano-scale X-ray computed tomography for resolving 3-D microstructures of porous fuel cell materials[J]. Journal of Power Sources, 2013, 241: 608-618. |
10 | Epting W K, Gelb J, Litster S. Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer-scale X-ray computed tomography[J]. Advanced Functional Materials, 2012, 22(3): 555-560. |
11 | Litster S, Epting W K, Wargo E A, et al. Morphological analyses of polymer electrolyte fuel cell electrodes with nano-scale computed tomography imaging[J]. Fuel Cells, 2013, 13(5): 935-945. |
12 | Hoefner M L, Fogler H S. Pore evolution and channel formation during flow and reaction in porous media[J]. AIChE Journal, 1988, 34(1): 45-54. |
13 | Liu P S. Determining methods for aperture and aperture distribution of porous materials[J]. Titanium Industry Progress, 2006, 23(2): 29-34. |
14 | Roquerol F, Rouquerol J, Sing K. Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications[M]. London: Academic Press, 1999. |
15 | Coasne B, Grosman A, Ortega C, et al. Adsorption in noninterconnected pores open at one or at both ends: a reconsideration of the origin of the hysteresis phenomenon[J]. Physical Review Letters, 2002, 88(25): 256102. |
16 | Cohan L H. Hysteresis and the capillary theory of adsorption of vapors1[J]. Journal of the American Chemical Society, 1944, 66(1): 98-105. |
17 | Horikawa T, Do D D, Nicholson D. Capillary condensation of adsorbates in porous materials[J]. Advances in Colloid and Interface Science, 2011, 169(1): 40-58. |
18 | 张伟庆, 黄滨, 余小岚, 等. 对BJH方法计算孔径分布过程的解读[J]. 大学化学, 2020, 35(2): 98-106. |
Zhang W Q, Huang B, Yu X L, et al. Interpretation of BJH method for calculating aperture distribution process[J]. University Chemistry, 2020, 35(2): 98-106. | |
19 | 近藤精一. 吸附科学[M]. 北京: 化学工业出版社, 2006: 32-34, 40-45, 72-80. |
Kondo S. Adsorption Science[M]. Beijing: Chemical Industry Press, 2006: 32-34, 40-45, 72-80. | |
20 | 贾双珠, 吴林媛, 陈炷霖, 等. 微介孔材料的孔结构分析表征[J]. 分析测试技术与仪器, 2019, 25(3): 141-147. |
Jia S Z, Wu L Y, Chen Z L, et al. Analysis and characterization of pore structure of micro-mesoporous materials[J]. Analysis and Testing Technology and Instruments, 2019, 25(3): 141-147. | |
21 | 浦群, 杨杰, 吴启强, 等. 含中孔和微孔的多孔炭的孔结构表征[J]. 实验技术与管理, 2015, 32(4): 52-55, 61. |
Pu Q, Yang J, Wu Q Q, et al. Characterization of pore structure of carbons containing micro-and meso-pores[J]. Experimental Technology and Management, 2015, 32(4): 52-55, 61. | |
22 | Wheeler A. Reaction rates and selectivity in catalyst pores[J]. Advances in Catalysis, 1951, 3: 249-327. |
23 | Carman P C. Fluid flow through granular beds[J]. Chemical Engineering Research and Design, 1997, 75: S32-S48. |
24 | Wakao N, Smith J M. Diffusion in catalyst pellets[J]. Chemical Engineering Science, 1962, 17: 825-834. |
25 | Wakao N, Smith J M. Diffusion and reaction in porous catalysts[J]. Industrial and Engineering Chemistry Fundamentals, 1964, 3: 123-127. |
26 | Beeckman J W, Froment G F. Catalyst deactivation by site coverage and pore blockage: finite rate of growth of the carbonaceous deposit[J]. Chemical Engineering Science, 1980, 35(4): 805-815. |
27 | Reyes S, Jensen K F. Estimation of effective transport coefficients in porous solids based on percolation concepts[J]. Chemical Engineering Science, 1985, 40(9): 1723-1734. |
28 | Hollewand M P, Gladden L F. Modelling of diffusion and reaction in porous catalysts using a random three-dimensional network model[J]. Chemical Engineering Science, 1992, 47(7): 1761-1770. |
29 | Ding W, Li H, Pfeifer P, et al. Crystallite-pore network model of transport and reaction of multicomponent gas mixtures in polycrystalline microporous media[J]. Chemical Engineering Journal, 2014, 254: 545-558. |
30 | Kharaghani A, Metzger T, Tsotsas E. An irregular pore network model for convective drying and resulting damage of particle aggregates[J]. Chemical Engineering Science, 2012, 75: 267-278. |
31 | Blunt M J, Jackson M D, Piri M, et al. Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow[J]. Advances in Water Resources, 2002, 25(8/12): 1069-1089. |
32 | El Hannach M, Prat M, Pauchet J. Pore network model of the cathode catalyst layer of proton exchange membrane fuel cells: analysis of water management and electrical performance[J]. International Journal of Hydrogen Energy, 2012, 37(24): 18996-19006. |
33 | Wu R, Liao Q, Zhu X, et al. Pore network modeling of cathode catalyst layer of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(15): 11255-11267. |
34 | Ye G, Sun Y, Zhou X, et al. Method for generating pore networks in porous particles of arbitrary shape, and its application to catalytic hydrogenation of benzene[J]. Chemical Engineering Journal, 2017, 329: 56-65. |
35 | Zhou Z M, Cheng Z M, Li Z, et al. Determination of effectiveness factor of a partial internal wetting catalyst from adsorption measurement[J]. Chemical Engineering Science, 2004, 59(20): 4305-4311. |
36 | 汪蓉, 盛勇, 杨传路, 等. 液态低沸点气体的表面张力[J]. 化学物理学报, 2000, 13(3): 380-384. |
Wang R, Sheng Y, Yang C L, et al. The surface tension of liquid gases for low-boiling point[J]. Chinese Journal of Chemical Physics, 2000, 13(3): 380-384. | |
37 | Yaws C L. Chemical Properties Handbook[M]. McGraw-Hill Education, 1999. |
38 | Androutsopoulos G P, Salmas C E. A new model for capillary condensation-evaporation hysteresis based on a random corrugated pore structure concept: prediction of intrinsic pore size distributions (part 1): Model formulation[J]. Industrial & Engineering Chemistry Research, 2000, 39(10): 3747-3763. |
39 | Pierce C. The Frenkel-Halsey-Hill adsorption isotherm and capillary condensation[J]. The Journal of Physical Chemistry, 1960, 64(9): 1184-1187. |
40 | Al-Futaisi A, Patzek T W. Extension of Hoshen-Kopelman algorithm to non-lattice environments[J]. Physica A: Statistical Mechanics and Its Applications, 2003, 321(3/4): 665- 678. |
41 | Murray K L, Seaton N A, Day M A. An adsorption-based method for the characterization of pore networks containing both mesopores and macropores[J]. Langmuir, 1999, 15(20): 6728-6737. |
[1] | Fangju LI, Wei WU, Shuangfeng WANG. Pore network simulation of transport properties in grooved gas diffusion layer of PEMFC [J]. CIESC Journal, 2020, 71(5): 1976-1985. |
[2] | JIANG Luo, CHEN Biaohua, ZHANG Jirui, FU Jiquan. Effect of activated carbon pore size distribution on low-mercury catalyst performance for acetylene hydrochlorination [J]. CIESC Journal, 2018, 69(1): 423-428. |
[3] | GONG Yanjun, LIU Rugeng, ZHAO Xiaomeng, ZHANG Heng. Review on application of small angle X-ray scattering to synthesis and characterization of zeolite [J]. CIESC Journal, 2016, 67(8): 3146-3159. |
[4] | XU Chengzhi, ZHENG Meiqin, XIONG Ying, HUANG Qingming, CHEN Xiaohui. Estimation of appropriate pore size distribution for diesel desulfurization adsorbent based on hindered diffusion model [J]. CIESC Journal, 2015, 66(9): 3611-3617. |
[5] | DING Binbin, LI Chaolin. Estimation of pore size distribution of porous media based on percolation theory [J]. CIESC Journal, 2015, 66(5): 1690-1696. |
[6] | LI Chunxi,XIONG Jiali,MENG Hong,LU Yingzhou. From ILs to PILs:Synthesis and structure tuning of poly ionic liquids mesoporous materials [J]. Chemical Industry and Engineering Progree, 2014, 33(08): 1941-1950. |
[7] | REN Ruipeng 1,CHEN Hu1,CHEN Jian2,Lü Yongkang1. Study on catalytic oxidations catalysts in removal of NO from flue gas [J]. Chemical Industry and Engineering Progree, 2014, 33(06): 1453-1458. |
[8] | XU Jiyuan,ZOU Yong,CHENG Lin. Pore parameters control and the influence on the capillary pumping performance of sintered nickel wicks [J]. CIESC Journal, 2012, 63(2): 463-469. |
[9] | WANG Yajing1,LAN Xuefang1,2,ZHANG Kongyuan1,2,CHAI Yongming1, ZHAO Ruiyu1,2,LIU Chenguang1,2 . Preparation of dual pore size distributed γ-Al2O3 with pore-expanding agent of dispersed carbon black [J]. Chemical Industry and Engineering Progree, 2012, 31(03): 598-603. |
[10] | REN Wenling,CHEN Shanyun,ZHANG Yongchun,LI Guimin. Preparation of Zn/SBA-15 and its desulfurization property on H2S [J]. , 2011, 30(10): 2304-. |
[11] | XU Yunqiang,ZHOU Guowei,LI Yanjing,BAI Guangwei. Progress in ordered mesoporous materials as controlled drug release carriers [J]. , 2010, 29(4): 677-. |
[12] |
YU Yang,ZHOU Meihua.
Microwave carbonization and microwave activation of PAN-based preoxidized nanofiber mat [J]. , 2010, 29(4): 704-. |
[13] | GUO Cuili,WANG Xiaoli,ZHANG Jinli . Synthesis and application of bimodal mesoporous materials [J]. , 2010, 29(3): 490-. |
[14] | WU Qisheng,LI Shuiping,SU Shasha. Hydrothermal synthesis of mesoporous materials from coal-measure Kaolin [J]. , 2009, 28(3): 458-. |
[15] | HANG Liang,LI Jun,WANG Jun. Synthesis and characterization of TiO2 mesoporous materials [J]. , 2009, 28(3): 453-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||