CIESC Journal ›› 2020, Vol. 71 ›› Issue (5): 1976-1985.DOI: 10.11949/0438-1157.20191438
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Fangju LI(),Wei WU,Shuangfeng WANG()
Received:
2019-11-26
Revised:
2020-02-06
Online:
2020-05-05
Published:
2020-05-05
Contact:
Shuangfeng WANG
通讯作者:
汪双凤
作者简介:
黎方菊(1995—),女,硕士研究生,基金资助:
CLC Number:
Fangju LI, Wei WU, Shuangfeng WANG. Pore network simulation of transport properties in grooved gas diffusion layer of PEMFC[J]. CIESC Journal, 2020, 71(5): 1976-1985.
黎方菊, 吴伟, 汪双凤. PEMFC带沟槽气体扩散层内传输特性孔隙网络模拟[J]. 化工学报, 2020, 71(5): 1976-1985.
Add to citation manager EndNote|Ris|BibTeX
参数 | μ/μm | σ/μm | a/μm | b/μm | |
---|---|---|---|---|---|
孔隙分布 | 10 | 1 | 8 | 12 | |
喉道分布 | 展向x×y | 5 | 1 | 3 | 7 |
纵向z | 6 | 1 | 4 | 8 |
Table 1 Pore and throat size distribution
参数 | μ/μm | σ/μm | a/μm | b/μm | |
---|---|---|---|---|---|
孔隙分布 | 10 | 1 | 8 | 12 | |
喉道分布 | 展向x×y | 5 | 1 | 3 | 7 |
纵向z | 6 | 1 | 4 | 8 |
案例 | GDL厚度/μm | 沟槽个数 | 沟槽深度/μm | 沟槽宽度/μm | 孔隙率/% | 示意图 |
---|---|---|---|---|---|---|
案例1 | 250 | 0 | — | — | 63.7 | |
案例2 | 250 | 1 | 100 | 150 | 65.0 | |
案例3 | 250 | 1 | 100 | 150 | 65.0 | |
案例4 | 150 | 0 | — | — | 63.7 | |
案例5 | 250 | 2 | 100 | 150 | 66.4 | |
案例6 | 250 | 2 | 100 | 150 | 66.4 |
Table 2 Parameters of GDL with different groove positions
案例 | GDL厚度/μm | 沟槽个数 | 沟槽深度/μm | 沟槽宽度/μm | 孔隙率/% | 示意图 |
---|---|---|---|---|---|---|
案例1 | 250 | 0 | — | — | 63.7 | |
案例2 | 250 | 1 | 100 | 150 | 65.0 | |
案例3 | 250 | 1 | 100 | 150 | 65.0 | |
案例4 | 150 | 0 | — | — | 63.7 | |
案例5 | 250 | 2 | 100 | 150 | 66.4 | |
案例6 | 250 | 2 | 100 | 150 | 66.4 |
20 | Mukherjee P P, Kang Q J, Wang C Y. Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells-progress and perspective[J]. Energy & Environmental Science, 2011, 4(2): 346-369. |
21 | Wilkinson D, Willemsen J F. Invasion percolation: a new form of percolation theory[J]. Journal of Physics A (Mathematical and General), 1983, 16(14): 3365-3376. |
22 | Sinha P K, Wang C Y. Liquid water transport in a mixed-wet gas diffusion layer of a polymer electrolyte fuel cell[J]. Chemical Engineering Science, 2008, 63(4): 1081-1091. |
23 | El Hannach M, Pauchet J, Prat M. Pore network modeling: Application to multiphase transport inside the cathode catalyst layer of proton exchange membrane fuel cell[J]. Electrochimica Acta, 2011, 56(28): 10796-10808. |
24 | Wu R, Zhu X, Liao Q, et al. Liquid and oxygen transport in defective bilayer gas diffusion material of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(10): 4067-4078. |
25 | Wu R, Liao Q, Zhu X, et al. Liquid and oxygen transport through bilayer gas diffusion materials of proton exchange membrane fuel cells[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6363-6373. |
26 | Kuttanikkad S P, Prat M, Pauchet J. Pore-network simulations of two-phase flow in a thin porous layer of mixed wettability: application to water transport in gas diffusion layers of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2011, 196(3): 1145-1155. |
27 | Ramos-Alvarado B, Sole J D, Hernandez-Guerrero A, et al. Experimental characterization of the water transport properties of PEM fuel cells diffusion media[J]. Journal of Power Sources, 2012, 218: 221-232. |
28 | Gostick J T, Ioannidis M A, Fowler M W, et al. Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2007, 173(1): 277-290. |
29 | Wang Y L, Wang S X, Liu S C, et al. Three-dimensional simulation of a PEM fuel cell with experimentally measured through-plane gas effective diffusivity considering Knudsen diffusion and the liquid water effect in porous electrodes[J]. Electrochimica Acta, 2019, 318: 770-782. |
30 | Penman H L. Gas and vapour movements in the soil (Ⅰ): The diffusion of vapours through porous solids[J]. Journal of Agricultural Science, 1940, 30(3): 437-462. |
31 | Shou D H, Fan J T, Ding F. Effective diffusivity of gas diffusion layer in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2013, 225: 179-186. |
1 | Omrani R, Shabani B. Review of gas diffusion layer for proton exchange membrane-based technologies with a focus on unitised regenerative fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(7): 3834-3860. |
2 | Lee K J, Kang J H, Nam J H. Liquid water distribution in hydrophobic gas-diffusion layers with interconnect rib geometry: an invasion-percolation pore network analysis[J]. International Journal of Hydrogen Energy, 2014, 39(12): 6646-6656. |
3 | Liu H, Hinebaugh J, Chevalier S, et al. Modeling the effect of fibre surface morphology on liquid water transport in polymer electrolyte membrane fuel cell gas diffusion layers[J]. Transport in Porous Media, 2018, 121(2): 437-458. |
4 | 胡桂林, 樊建人, 岑可法. 质子交换膜燃料电池动态过程的数值模拟[J]. 化工学报, 2006, 57(11): 2693-2698. |
Hu G L, Fan J R, Cen K F. Numerical simulation of dynamic behavior of proton exchange membrane fuel cell[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(11): 2693-2698. | |
5 | 王学科, 王树博, 潘元, 等. 阳极进气湿度对质子交换膜水含量及电流密度分布影响[J]. 化工学报, 2015, 66: 342-348. |
Wang X K, Wang S B, Pan Y, et al. Effect of anode inlet gas humidification on PEM water contents and current density distribution[J]. CIESC Journal, 2015, 66: 342-348. | |
6 | Aghighi M, Hoeh M A, Lehnert W, et al. Simulation of a full fuel cell membrane electrode assembly using pore network modeling[J]. Journal of the Electrochemical Society, 2016, 163(5): F384-F392. |
7 | Fazeli M, Hinebaugh J, Fishman Z, et al. Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers[J]. Journal of Power Sources, 2016, 335: 162-171. |
8 | Omrani R, Shabani B. Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: a review[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28515-28536. |
9 | Dujc J, Forner-Cuenca A, Marmet P, et al. Modeling the effects of using gas diffusion layers with patterned wettability for advanced water management in proton exchange membrane fuel cells[J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(0210012). |
10 | Gerteisen D, Heilmann T, Ziegler C. Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell[J]. Journal of Power Sources, 2008, 177(2): 348-354. |
11 | Hauβsmann J, Markoetter H, Alink R, et al. Synchrotron radiography and tomography of water transport in perforated gas diffusion media[J]. Journal of Power Sources, 2013, 239: 611-622. |
12 | Wang X K, Chen S T, Fan Z H, et al. Laser-perforated gas diffusion layer for promoting liquid water transport in a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29995-30003. |
13 | Fang W Z, Tang Y Q, Chen L, et al. Influences of the perforation on effective transport properties of gas diffusion layers[J]. International Journal of Heat and Mass Transfer, 2018, 126(A): 243-255. |
14 | Niu Z Q, Wu J T, Bao Z M, et al. Two-phase flow and oxygen transport in the perforated gas diffusion layer of proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2019, 139: 58-68. |
15 | Nishida K, Murakami T, Tsushima S, et al. Measurement of liquid water content in cathode gas diffusion electrode of polymer electrolyte fuel cell[J]. Journal of Power Sources, 2010, 195(11): 3365-3373. |
16 | Lee K J, Kang J H, Nam J H, et al. Steady liquid water saturation distribution in hydrophobic gas-diffusion layers with engineered pore paths: an invasion-percolation pore-network analysis[J]. Journal of Power Sources, 2010, 195(11): 3508-3512. |
17 | 程树. PEMFC气体扩散层干燥的孔隙网络模拟及实验研究[D]. 上海: 上海理工大学, 2015. |
Cheng S. Pore network model and similarity experiment for drying of gas diffusion layer of PEMFC[D]. Shanghai: University of Shanghai for Science and Technology, 2015. | |
18 | Fazeli M, Hinebaugh J, Bazylak A. Investigating inlet condition effects on PEMFC GDL liquid water transport through pore network modeling[J]. Journal of the Electrochemical Society, 2015, 162(7): F661-F668. |
19 | Zhan N H, Wu W, Wang S F. Pore network modeling of liquid water and oxygen transport through the porosity-graded bilayer gas diffusion layer of polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2019, 306: 264-276. |
32 | Tan Z T, Jia L, Zhang Z Q. A study on the transport process in gas diffusion layer of proton exchange membrane fuel cells[J]. Journal of Thermal Science, 2011, 20(5): 449-453 |
[1] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[2] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[3] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[4] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[5] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[6] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[7] | Weizheng ZHANG, Jijun ZHAO, Xuezhong MA, Qixuan ZHANG, Yixiang PANG, Juntao ZHANG. Analysis of turbulence effect on face groove cooling performance of high-speed mechanical seals [J]. CIESC Journal, 2023, 74(3): 1228-1238. |
[8] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[9] | Peixu ZHOU, Yalun LI, Gongran YE, Yuan ZHUANG, Xilei WU, Zhikai GUO, Xiaohong HAN. Influence of physical properties of working fluids on leakage and diffusion characteristics of refrigerant in limited space [J]. CIESC Journal, 2023, 74(2): 953-967. |
[10] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[11] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[12] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[13] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[14] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
[15] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||