CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5594-5603.DOI: 10.11949/0438-1157.20250403
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles Next Articles
Yanlong ZHANG(
), Qiuyang ZHAO, Zhangjian LI, Yin CHEN, Hui JIN, Liejin GUO(
)
Received:2025-04-16
Revised:2025-07-03
Online:2025-12-19
Published:2025-11-25
Contact:
Liejin GUO
张延龙(
), 赵秋阳, 李章剑, 陈引, 金辉, 郭烈锦(
)
通讯作者:
郭烈锦
作者简介:张延龙(1995—),男,博士研究生,long1821@stu.xjtu.edu.cn
基金资助:CLC Number:
Yanlong ZHANG, Qiuyang ZHAO, Zhangjian LI, Yin CHEN, Hui JIN, Liejin GUO. Reaction kinetics on supercritical water conversion of shale for hydrocarbon gas production[J]. CIESC Journal, 2025, 76(11): 5594-5603.
张延龙, 赵秋阳, 李章剑, 陈引, 金辉, 郭烈锦. 超临界水转化页岩生烃气反应动力学研究[J]. 化工学报, 2025, 76(11): 5594-5603.
Add to citation manager EndNote|Ris|BibTeX
| 元素分析/%(质量) | 工业分析/%(质量) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| C | H | O | N | S | Ash | Moisture | Volatile | FC | |
| 13.56 | 2.26 | 1.01 | 1.53 | 4.75 | 75.21 | 1.68 | 16.62 | 4.34 | |
Table 1 The Ultimate analysis and proximate analysis of shale sample
| 元素分析/%(质量) | 工业分析/%(质量) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| C | H | O | N | S | Ash | Moisture | Volatile | FC | |
| 13.56 | 2.26 | 1.01 | 1.53 | 4.75 | 75.21 | 1.68 | 16.62 | 4.34 | |
| No. | 组分 | 450℃ | 550℃ |
|---|---|---|---|
| 1 | 2,4-二甲基苯乙烯 | 0.79 | — |
| 2 | 萘 | 3.21 | 1.44 |
| 4 | 2-甲基十一烷 | 3.08 | 1.00 |
| 5 | 1H-茚,1-亚乙基 | 2.42 | 4.41 |
| 6 | 萘,1-甲基 | 3.34 | 1.35 |
| 7 | 萘,1,2,3,4-四氢-1,8-二甲基 | 0.55 | 0.49 |
| 8 | 庚烷,2,3-二甲基 | 1.36 | 1.75 |
| 9 | 萘,2,7-二甲基 | 7.41 | 2.43 |
| 10 | 戊-1-炔-3-烯,4-甲基-3-苯基 | 0.45 | 0.32 |
| 11 | 非腺苷 | 3.12 | 3.25 |
| 12 | 1,6,7-三甲基萘 | 7.16 | 2.62 |
| 13 | 2,5-双(1,1-二甲基乙基)苯酚 | 1.28 | 0.64 |
| 14 | 芴 | 0.41 | — |
| 15 | 萘,1-(2-丙烯基) | 1.49 | 1.39 |
| 16 | 1,6-二甲基-3-乙基萘 | 1.77 | — |
| 17 | 2-异丙基-7-甲基萘 | 0.98 | 3.22 |
| 18 | 5,8,11,14-二十碳四烯酸 | 1.79 | 0.54 |
| 19 | 2-[2-苯乙烯基]苯酚 | 0.78 | 0.36 |
| 20 | 十五烷,5-甲基 | 0.77 | 0.29 |
| 21 | 菲 | 5.81 | 3.84 |
| 22 | 乙醇,2-(十八烷氧基) | 0.94 | — |
| 23 | 3,5,3',5'-四甲基联苯 | 2.60 | — |
| 24 | 4-甲基菲 | 1.92 | 3.08 |
| 25 | 庚烷,9-己基 | 3.28 | — |
| 26 | 邻苯二甲酸二丁酯 | 17.39 | 11.82 |
| 27 | 1,2-苯二甲酸 | 4.16 | 3.13 |
| 28 | 蒽,9-乙基-9,10-二氢-10-羟基 | 0.74 | — |
| 29 | 2,7-二甲基菲 | 1.50 | 0.72 |
| 30 | 芘,4,5,9,10-四氢 | 1.11 | — |
| 31 | 芘 | 1.47 | 1.56 |
| 32 | 2,2'-二乙烯基二苯甲酮 | 1.33 | 0.53 |
| 33 | 乙酸,α-(1-萘基)苄酯 | 1.02 | 1.55 |
| 34 | 1,2,3,4-四氢三苯撑 | 1.58 | 2.26 |
| 35 | 8,9-苯并二异丙基[2.2.2.4]癸烷,7-(3-甲氧基- 2-氧杂-1-氧代环戊-5-基)-10-苯基 | 1.09 | — |
| 36 | 2,6,10,15-四甲基庚烷 | 2.20 | 1.14 |
| 37 | 苯酚,2,2'-亚甲基双[6-(1,1-二甲基乙基)-4-甲基 | 3.07 | 1.61 |
| 38 | 苯并蒽,6,12-二甲基-1,2,3,4-四氢 | 2.28 | — |
Table 2 Produced oil components at 450 and 550℃ at 240 min
| No. | 组分 | 450℃ | 550℃ |
|---|---|---|---|
| 1 | 2,4-二甲基苯乙烯 | 0.79 | — |
| 2 | 萘 | 3.21 | 1.44 |
| 4 | 2-甲基十一烷 | 3.08 | 1.00 |
| 5 | 1H-茚,1-亚乙基 | 2.42 | 4.41 |
| 6 | 萘,1-甲基 | 3.34 | 1.35 |
| 7 | 萘,1,2,3,4-四氢-1,8-二甲基 | 0.55 | 0.49 |
| 8 | 庚烷,2,3-二甲基 | 1.36 | 1.75 |
| 9 | 萘,2,7-二甲基 | 7.41 | 2.43 |
| 10 | 戊-1-炔-3-烯,4-甲基-3-苯基 | 0.45 | 0.32 |
| 11 | 非腺苷 | 3.12 | 3.25 |
| 12 | 1,6,7-三甲基萘 | 7.16 | 2.62 |
| 13 | 2,5-双(1,1-二甲基乙基)苯酚 | 1.28 | 0.64 |
| 14 | 芴 | 0.41 | — |
| 15 | 萘,1-(2-丙烯基) | 1.49 | 1.39 |
| 16 | 1,6-二甲基-3-乙基萘 | 1.77 | — |
| 17 | 2-异丙基-7-甲基萘 | 0.98 | 3.22 |
| 18 | 5,8,11,14-二十碳四烯酸 | 1.79 | 0.54 |
| 19 | 2-[2-苯乙烯基]苯酚 | 0.78 | 0.36 |
| 20 | 十五烷,5-甲基 | 0.77 | 0.29 |
| 21 | 菲 | 5.81 | 3.84 |
| 22 | 乙醇,2-(十八烷氧基) | 0.94 | — |
| 23 | 3,5,3',5'-四甲基联苯 | 2.60 | — |
| 24 | 4-甲基菲 | 1.92 | 3.08 |
| 25 | 庚烷,9-己基 | 3.28 | — |
| 26 | 邻苯二甲酸二丁酯 | 17.39 | 11.82 |
| 27 | 1,2-苯二甲酸 | 4.16 | 3.13 |
| 28 | 蒽,9-乙基-9,10-二氢-10-羟基 | 0.74 | — |
| 29 | 2,7-二甲基菲 | 1.50 | 0.72 |
| 30 | 芘,4,5,9,10-四氢 | 1.11 | — |
| 31 | 芘 | 1.47 | 1.56 |
| 32 | 2,2'-二乙烯基二苯甲酮 | 1.33 | 0.53 |
| 33 | 乙酸,α-(1-萘基)苄酯 | 1.02 | 1.55 |
| 34 | 1,2,3,4-四氢三苯撑 | 1.58 | 2.26 |
| 35 | 8,9-苯并二异丙基[2.2.2.4]癸烷,7-(3-甲氧基- 2-氧杂-1-氧代环戊-5-基)-10-苯基 | 1.09 | — |
| 36 | 2,6,10,15-四甲基庚烷 | 2.20 | 1.14 |
| 37 | 苯酚,2,2'-亚甲基双[6-(1,1-二甲基乙基)-4-甲基 | 3.07 | 1.61 |
| 38 | 苯并蒽,6,12-二甲基-1,2,3,4-四氢 | 2.28 | — |
| First column | Second column |
|---|---|
Table 3 The equation for the reaction path
| First column | Second column |
|---|---|
| 物质 | xi | 物质 | xi |
|---|---|---|---|
| 页岩(OM) | x1 | H2 | x6 |
| 萘(Med1) | x2 | CO2 | x7 |
| 邻苯二甲酸二丁酯(Med2) | x3 | CH4 | x8 |
| 1,2-苯二甲酸(Med3) | x4 | C2H6 | x9 |
| H2O | x5 | C3H8 | x10 |
Table 4 The sequence number of reactant
| 物质 | xi | 物质 | xi |
|---|---|---|---|
| 页岩(OM) | x1 | H2 | x6 |
| 萘(Med1) | x2 | CO2 | x7 |
| 邻苯二甲酸二丁酯(Med2) | x3 | CH4 | x8 |
| 1,2-苯二甲酸(Med3) | x4 | C2H6 | x9 |
| H2O | x5 | C3H8 | x10 |
| 物质 | 反应速率 | 物质 | 反应速率 |
|---|---|---|---|
| x1 | x6 | ||
| x2 | x7 | ||
| x3 | x8 | ||
| x4 | x9 | ||
| x5 | x10 |
Table 5 Rate equations for each reaction
| 物质 | 反应速率 | 物质 | 反应速率 |
|---|---|---|---|
| x1 | x6 | ||
| x2 | x7 | ||
| x3 | x8 | ||
| x4 | x9 | ||
| x5 | x10 |
| 物质 | 表达式 | 物质 | 表达式 |
|---|---|---|---|
| x1 | x6 | ||
| x2 | x7 | ||
| x3 | x8 | ||
| x4 | x9 | ||
| x5 | x10 |
Table 6 First order differential equation of reactant concentration
| 物质 | 表达式 | 物质 | 表达式 |
|---|---|---|---|
| x1 | x6 | ||
| x2 | x7 | ||
| x3 | x8 | ||
| x4 | x9 | ||
| x5 | x10 |
| ki | 450℃ | 500℃ | 550℃ | E/(kJ/mol) | A/min-1 |
|---|---|---|---|---|---|
| k1 | 1.40 | 1.83 | 2.28 | 24.14 | 77.92 |
| k2 | 2.15 | 2.42 | 2.69 | 11.08 | 13.58 |
| k3 | 2.07×10-2 | 3.63×10-2 | 5.18×10-2 | 45.53 | 41.28 |
| k4 | 1.49 | 1.79 | 1.95 | 13.39 | 14.01 |
| k5 | 5.23×10-1 | 6.65×10-1 | 7.77×10-1 | 19.65 | 13.87 |
| k6 | 1.56 | 1.93 | 2.15 | 15.96 | 22.48 |
| k7 | 3.67 | 4.34 | 4.77 | 13.03 | 32.34 |
| k8 | 2.43×10-3 | 3.96×10-3 | 7.53×10-3 | 55.71 | 24.84 |
| k9 | 1.53×10-1 | 1.94×10-1 | 3.22×10-1 | 36.47 | 62.87 |
| k10 | 9.67×10-3 | 1.22×10-2 | 1.45×10-2 | 47.02 | 15.37 |
Table 7 The reaction rate constants change with temperature and the corresponding activation energy and pre-exponential factor
| ki | 450℃ | 500℃ | 550℃ | E/(kJ/mol) | A/min-1 |
|---|---|---|---|---|---|
| k1 | 1.40 | 1.83 | 2.28 | 24.14 | 77.92 |
| k2 | 2.15 | 2.42 | 2.69 | 11.08 | 13.58 |
| k3 | 2.07×10-2 | 3.63×10-2 | 5.18×10-2 | 45.53 | 41.28 |
| k4 | 1.49 | 1.79 | 1.95 | 13.39 | 14.01 |
| k5 | 5.23×10-1 | 6.65×10-1 | 7.77×10-1 | 19.65 | 13.87 |
| k6 | 1.56 | 1.93 | 2.15 | 15.96 | 22.48 |
| k7 | 3.67 | 4.34 | 4.77 | 13.03 | 32.34 |
| k8 | 2.43×10-3 | 3.96×10-3 | 7.53×10-3 | 55.71 | 24.84 |
| k9 | 1.53×10-1 | 1.94×10-1 | 3.22×10-1 | 36.47 | 62.87 |
| k10 | 9.67×10-3 | 1.22×10-2 | 1.45×10-2 | 47.02 | 15.37 |
| [1] | 昝灵, 骆卫峰, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价[J]. 石油实验地质, 2021, 43(2): 233-241. |
| Zan L, Luo W F, Yin Y L, et al. Formation conditions of shale oil and favorable targets in the second member of Paleogene Funing Formation in Qintong Sag,Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 233-241. | |
| [2] | 袁伟, 柳广弟, 袁红旗. 鄂尔多斯盆地上三叠统延长组长7段富有机质页岩中藻类化石的发现及地质意义[J]. 地质论评, 2023, 69(1):365-374. |
| Yuan W, Liu G D, Yuan H Q. Discovery of algal fossils in the Chang-7 organic-rich shale of Upper Triassic Yanchang Formation in Ordos Basin and its geological significance[J]. Geological Review, 2023, 69(1): 365-374. | |
| [3] | 邹佳婕, 代朝猛, 韩跃鸣, 等. 页岩油气开采对地下水污染研究现状与动向[J]. 同济大学学报(自然科学版), 2024, 52(5): 796-804. |
| Zou J J, Dai C M, Han Y M, et al. A review on current situation of groundwater pollution from shale oil and gas extraction[J]. Journal of Tongji University (Natural Science), 2024, 52(5): 796-804. | |
| [4] | 唐巨鹏, 余泓浩. 油页岩原位开采物理模拟试验研究现状及展望[J]. 辽宁工程技术大学学报(自然科学版), 2024, 43(5): 565-580. |
| Tang J P, Yu H H. Research status and prospect on physical simulation test of oil shale in-situ mining[J]. Journal of Liaoning technical university (Natural Science), 2024, 43(5): 565-580. | |
| [5] | 王梦奇, 李震, 冯爱欣, 等. 有机废水的超临界水氧化处理研究进展[J]. 广州化工, 2021, 49(23): 1-4, 14. |
| Wang M Q, Li Z, Feng A X, et al. Research progress on treatment of organic wastewater by supercritical water oxidation [J]. Guangzhou Chemical Industry, 2021, 49(23): 1-4, 14. | |
| [6] | Huang X, Qin J X, Hou Z H, et al. Heat transfer characteristics of supercritical water in a horizontal tube considering local temperature fields: an experimental study[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123404. |
| [7] | Meng F Y, Yao C J, Du X G, et al. Experimental investigation on composition and pore structure evolution of organic-rich shale via supercritical water [J]. Energy & Fuels, 2023, 37(20): 15671-15686. |
| [8] | Li S J, Guo X W, Zheng L J, et al. Semi-closed hydrous pyrolysis of type I source rock using formation water: implications for biomarker behaviour under supercritical conditions[J]. Marine and Petroleum Geology, 2023, 158: 106510. |
| [9] | Zhao Q Y, Bawaa B, Xie T, et al. Experimental study on hydrocarbon generation characteristics of type Ⅱ kerogen from low-maturity shale in supercritical water[J]. Industrial & Engineering Chemistry Research, 2023, 62(42): 17343-17353. |
| [10] | Zhao Q Y, Dong Y, Zheng L C, et al. Sub- and supercritical water conversion of organic-rich shale with low-maturity for oil and gas generation: using Chang 7 shale as an example[J]. Sustainable Energy & Fuels, 2023, 7(1): 155-163. |
| [11] | Xie T, Zhao Q Y, Dong Y, et al. Experimental investigation on hydrocarbon generation of organic-rich shale with low maturity in sub- and supercritical water[J]. Geoenergy Science and Engineering, 2023, 223: 211553. |
| [12] | Yao C J, Meng F Y, Zhang H X, et al. Experimental investigation on the pyrolysis and conversion characteristics of organic-rich shale by supercritical water[J]. ACS Omega, 2023, 8(51): 49046-49056. |
| [13] | Djimasbe R, Varfolomeev M A, Khasanova N M, et al. Use of deuterated water to prove its role as hydrogen donor during the hydrothermal upgrading of oil shale at supercritical conditions[J]. The Journal of Supercritical Fluids, 2024, 204: 106092. |
| [14] | 谢天, 赵秋阳, 董宇, 等. 超临界水转化低成熟富有机质页岩生烃特性实验研究[J]. 工程热物理学报, 2022, 43(10): 2675-2680. |
| Xie T, Zhao Q Y, Dong Y, et al. Experimental investigation on hydrocarbon generation characteristics of low maturity organic-rich shale converted by supercritical water[J]. Journal of Engineering Thermophysics, 2022, 43(10): 2675-2680. | |
| [15] | Xie T, Zhao Q Y, Dong Y, et al. Experimental investigation on the hydrocarbon generation of low maturity organic-rich shale in supercritical water[J]. Oil Shale, 2022, 39(3): 169-188. |
| [16] | Xie T, Zhao Q Y, Jin H, et al. Experimental investigation on the organic carbon migration path and pore evolution during co-thermal hydrocarbon generation of low maturity organic-rich shale and supercritical water [J]. Energy & Fuels, 2022, 36(24): 15047-15054. |
| [17] | 巴尔成·巴瓦阿, 赵秋阳, 谢天, 等. 页岩干酪根提取及超临界水转化特性研究[J]. 工程热物理学报, 2023, 44(09): 2452-2457. |
| Bawaa B, Zhao Q Y, Xie T, et al. Extraction and supercritical water conversion characteristics of kerogen[J]. Journal of Engineering Thermophysics, 2023, 44(09): 2452-2457. | |
| [18] | Liang X P, Zhao Q Y, Dong Y, et al. Experimental investigation on supercritical water gasification of organic-rich shale with low maturity for syngas production[J]. Energy & Fuels, 2021, 35(9): 7657-7665. |
| [19] | Xie T, Zhao Q Y, Jin H, et al. Reaction kinetics study on hydrocarbon generation of medium- and low-maturity organic-rich shale in supercritical water [J]. Energy & Fuels, 2023, 37(18): 14192-14201. |
| [20] | Zhao S, Pu W F, Yuan C D, et al. SARA-based kinetics model for simulating heat release during crude oil combustion[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(8): 3197-3204. |
| [21] | Pope C, Ismail N B, Hascakir B. The role of reservoir fluids and reservoir rock mineralogy on in-situ combustion kinetics[J]. Geoenergy Science and Engineering, 2023, 224: 211516. |
| [22] | Félix G, Djimasbe R, Varfolomeev M A, et al. 4-lump kinetic model for non-catalytic oil shale upgrading at sub- and supercritical water conditions[J]. Fuel, 2024, 357: 129987. |
| [23] | Huang S, Cao M, Huang Q, et al. Study on reaction equations of heavy oil aquathermolysis with superheated steam[J]. International Journal of Environmental Science and Technology, 2019, 16(9): 5023-5032. |
| [24] | Dong Y, Zhao Q Y, Zhou Y T, et al. Kinetic study of asphaltenes phase separation in supercritical water upgrading of heavy oil[J]. Fuel Processing Technology, 2023, 241: 107588. |
| [25] | Wood D A. Thermal maturity and burial history modelling of shale is enhanced by use of Arrhenius time-temperature index and memetic optimizer[J]. Petroleum, 2018, 4(1): 25-42. |
| [26] | Hoyos B. Generalized liquid volume shifts for the Peng-Robinson equation of state for C1 to C8 hydrocarbons[J]. Latin American Applied Research, 2004, 34(2): 83-89. |
| [27] | Shanshool J, Hashim E T, Ali Hassaballah A. Prediction of liquefied natural gas density using Peng-Robinson equation of state[J]. Petroleum Science and Technology, 2004, 22(3/4): 415-422. |
| [28] | Trawiński P. Development and implementation of mathematical models of working mediums for gas part of combined cycle gas turbine system in Python programming environment[J]. E3S Web of Conferences, 2019, 137: 01047. |
| [29] | Bell I H, Welliquet J, Mondejar M E, et al. Application of the group contribution volume translated Peng-Robinson equation of state to new commercial refrigerant mixtures[J]. International Journal of Refrigeration, 2019, 103: 316-328. |
| [30] | Gao G H, Daridon J L, Saint-Guirons H, et al. A simple correlation to evaluate binary interaction parameters of the Peng-Robinson equation of state: binary light hydrocarbon systems[J]. Fluid Phase Equilibria, 1992, 74: 85-93. |
| [31] | Bühler W, Dinjus E, Ederer H J, et al. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water[J]. The Journal of Supercritical Fluids, 2002, 22(1): 37-53. |
| [32] | Susanti R F, Veriansyah B, Kim J D, et al. Continuous supercritical water gasification of isooctane: a promising reactor design[J]. International Journal of Hydrogen Energy, 2010, 35(5): 1957-1970. |
| [33] | Jiang S H, Sun Y H, Zhang G B, et al. Dynamics and mechanisms of methane hydrate reformation near wellbores: investigating heat and mass transfer processes[J]. International Journal of Heat and Mass Transfer, 2024, 231: 125826. |
| [34] | Ploeger J M, Bielenberg P A, Dinaro-Blanchard J L, et al. Modeling oxidation and hydrolysis reactions in supercritical water: free radical elementary reaction networks and their applications[J]. Combustion Science and Technology-COMBUST SCI TECHNOL, 2006, 178(1/2/3): 363-398. |
| [35] | Li H Y, Hu Y L, Wang H Y, et al. Supercritical water gasification of lignocellulosic biomass: development of a general kinetic model for prediction of gas yield[J]. Chemical Engineering Journal, 2022, 433: 133618. |
| [36] | Han W X, Luo X, Tao S Z, et al. Activation energy and organic matter structure characteristics of shale kerogen and their significance for the in-situ conversion process of shale oil[J]. Fuel, 2024, 370: 131823. |
| [37] | Wang Z J, Deng S H, Gu Q, et al. Pyrolysis kinetic study of Huadian oil shale, spent oil shale and their mixtures by thermogravimetric analysis[J]. Fuel Processing Technology, 2013, 110: 103-108. |
| [38] | Al-Harahsheh M, Al-Ayed O, Robinson J, et al. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales[J]. Fuel Processing Technology, 2011, 92(9): 1805-1811. |
| [39] | Xu S K, Butler I, Gökalp I, et al. Evolution of naphthalene and its intermediates during oxidation in subcritical/supercritical water[J]. Proceedings of the Combustion Institute, 2011, 33(2): 3185-3194. |
| [40] | Félix G, Djimasbe R, Varfolomeev M A, et al. Kinetic modeling of oil shale upgrading at sub- and supercritical water conditions using Ni- and Fe-based oil-soluble catalysts[J]. The Journal of Supercritical Fluids, 2024, 207: 106193. |
| [41] | Zheng L C, Zhao Q Y, Dong Y, et al. Molecular dynamics simulation of sub- and supercritical water extraction shale oil in slit nanopores[J]. The Journal of Supercritical Fluids, 2023, 195: 105862. |
| [42] | Wijenayake A G B S P, Hassan M, Komiyama M. Supercritical water gasification of microalga Nannochloropsis over supported Ni and Ru catalysts[J]. AIP Conference Proceedings, 2016, 1787(1): 030013. |
| [43] | Ozerskii A V, Zimin Y S, Timofeev K A, et al. Oxidative cracking of propane in the presence of hydrogen [J]. Russian Journal of Applied Chemistry, 2021, 94(6): 787-792. |
| [1] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [2] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [3] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [4] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [5] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [6] | Fanchen KONG, Shuo ZHANG, Mingsheng TANG, Huiming ZOU, Zhouhang HU, Changqing TIAN. Simulation of gas bearings in carbon dioxide linear compressors [J]. CIESC Journal, 2025, 76(S1): 281-288. |
| [7] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [8] | Zihang WU, Zhenyuan XU, Jinfang YOU, Quanwen PAN, Ruzhu WANG. Cooling system for deep well drilling equipment based on adsorption cold storage technology [J]. CIESC Journal, 2025, 76(S1): 309-317. |
| [9] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [10] | Hao DING, Lin WANG, Hao LIU. Comparative study on mixing rules of vapor-liquid equilibrium for R290/R245fa [J]. CIESC Journal, 2025, 76(S1): 9-16. |
| [11] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [12] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| [13] | Jiaqi XU, Wenjun ZHANG, Yanping YU, Baogen SU, Qilong REN, Qiwei YANG. Numerical simulation and experimental study of the conversion of refinery gas to syngas via thermal plasma [J]. CIESC Journal, 2025, 76(9): 4462-4473. |
| [14] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [15] | Mengjiao WANG, Kaixue HU, Xiangkai MENG, Jinbo JIANG, Xudong PENG. Influence of micro-texture size and areal density on surface of silicon carbide on tribological properties of sliding sealing surfaces [J]. CIESC Journal, 2025, 76(8): 4165-4176. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||