CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 3990-4003.DOI: 10.11949/0438-1157.20250129
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Wei ZHANG1(
), Qiyong WU1, Huazhong SUN2, Shi HU2, Xiaolong ZHU2(
), Shuai KONG3
Received:2025-02-12
Revised:2025-03-24
Online:2025-09-17
Published:2025-08-25
Contact:
Xiaolong ZHU
张伟1(
), 武齐永1, 孙华中2, 胡适2, 朱小龙2(
), 孔帅3
通讯作者:
朱小龙
作者简介:张伟(1976—),男,博士,高级工程师,13552985272@163.com
基金资助:CLC Number:
Wei ZHANG, Qiyong WU, Huazhong SUN, Shi HU, Xiaolong ZHU, Shuai KONG. Study on rebound behavior characteristics of droplets and dust particles at micron-scale[J]. CIESC Journal, 2025, 76(8): 3990-4003.
张伟, 武齐永, 孙华中, 胡适, 朱小龙, 孔帅. 微米尺度液滴与尘粒作用后反弹行为特性研究[J]. 化工学报, 2025, 76(8): 3990-4003.
Add to citation manager EndNote|Ris|BibTeX
| 雾化方法 | 水压/MPa | 气压/ MPa | 索特尔平均 粒径/μm | 射程/m | 速度/ (m·s-1) |
|---|---|---|---|---|---|
| 单相高压雾化[ | 6~10 | 无 | 30~80 | < 3 | 12~30 |
| 两相雾化[ | < 0.5 | < 0.6 | < 30 | < 1 | < 10 |
| 超声雾化[ | < 0.5 | < 0.5 | < 30 | 1.5~2 | 4~11 |
| 超音速气流雾化[ | < 0.5 | < 0.5 | 5~20 | 4.9~7 | < 600 |
Table 1 Typical parameters of fog field characteristics generated by different atomization methods
| 雾化方法 | 水压/MPa | 气压/ MPa | 索特尔平均 粒径/μm | 射程/m | 速度/ (m·s-1) |
|---|---|---|---|---|---|
| 单相高压雾化[ | 6~10 | 无 | 30~80 | < 3 | 12~30 |
| 两相雾化[ | < 0.5 | < 0.6 | < 30 | < 1 | < 10 |
| 超声雾化[ | < 0.5 | < 0.5 | < 30 | 1.5~2 | 4~11 |
| 超音速气流雾化[ | < 0.5 | < 0.5 | 5~20 | 4.9~7 | < 600 |
| 液滴理化特性改善方法 | 表面张力/(mN·m-1) |
|---|---|
| 磁化水[ | 69~72 |
| 多组分水雾[ | 29~40 |
| 磁化+多组分水雾[ | 26~32 |
| 荷电水雾[ | 12~20 |
Table 2 Surface tension of fog droplets treated with different physicochemical properties improvement methods
| 液滴理化特性改善方法 | 表面张力/(mN·m-1) |
|---|---|
| 磁化水[ | 69~72 |
| 多组分水雾[ | 29~40 |
| 磁化+多组分水雾[ | 26~32 |
| 荷电水雾[ | 12~20 |
| 固体类型 | 液体类型 | 接触角 | 液体表面张力σ/(mN·m-1) | 液体黏度μ/(mPa·s) | 来源 |
|---|---|---|---|---|---|
| ST1:聚硅烷处理的二氧化硅(高度疏水) | 蒸馏水 | α = 168.4°,β = 91.4° | 72.3 | 1.04 | 实测 |
| 浓度为1 mmol·L-1的CTAB溶液 | α = 151.2°,β = 15.2° | 34.2 | 1.04 | 实测 | |
| ST2:石墨(中度疏水) | 蒸馏水 | α = 90.0°,β = 23.0° | 72.0 | 1.04 | 文献[ |
| 浓度为1 mmol·L-1的CTAB溶液 | α = 62.0°,β = 17.0° | 34.2 | 1.04 | 文献[ | |
| ST3:二氧化硅(亲水) | 蒸馏水 | α = 25.0°,β = 7.5° | 72.0 | 1.04 | 文献[ |
Table 3 Wetting characteristics of different types of liquids and solids
| 固体类型 | 液体类型 | 接触角 | 液体表面张力σ/(mN·m-1) | 液体黏度μ/(mPa·s) | 来源 |
|---|---|---|---|---|---|
| ST1:聚硅烷处理的二氧化硅(高度疏水) | 蒸馏水 | α = 168.4°,β = 91.4° | 72.3 | 1.04 | 实测 |
| 浓度为1 mmol·L-1的CTAB溶液 | α = 151.2°,β = 15.2° | 34.2 | 1.04 | 实测 | |
| ST2:石墨(中度疏水) | 蒸馏水 | α = 90.0°,β = 23.0° | 72.0 | 1.04 | 文献[ |
| 浓度为1 mmol·L-1的CTAB溶液 | α = 62.0°,β = 17.0° | 34.2 | 1.04 | 文献[ | |
| ST3:二氧化硅(亲水) | 蒸馏水 | α = 25.0°,β = 7.5° | 72.0 | 1.04 | 文献[ |
| 颗粒直径/μm | 计算域尺寸/μm |
|---|---|
| 3000 | 21000×6600 |
| 2000 | 14000×4400 |
| 125 | 875×275 |
| 25 | 175×55 |
| 5 | 35×11 |
| 1 | 7×2.2 |
| 0.2 | 1.4×0.44 |
Table 4 Computational domain sizes corresponding to different particle sizes
| 颗粒直径/μm | 计算域尺寸/μm |
|---|---|
| 3000 | 21000×6600 |
| 2000 | 14000×4400 |
| 125 | 875×275 |
| 25 | 175×55 |
| 5 | 35×11 |
| 1 | 7×2.2 |
| 0.2 | 1.4×0.44 |
| 常量 | 变量 | ||||
|---|---|---|---|---|---|
| 液滴-颗粒直径比Ω | 液滴表面 张力σ/ (mN·m-1) | 接触角 | 液滴黏度μ/(mPa·s) | 碰撞速度v0/(m·s-1) | 颗粒直径 dp/μm |
| 1.31 | 72 | α= 168.4°,β =91.4° | 1.04 | 1~500 | 1, 5, 25, 125 |
| 5.2 | |||||
Table 5 Condition parameters set when studying the influence of viscosity
| 常量 | 变量 | ||||
|---|---|---|---|---|---|
| 液滴-颗粒直径比Ω | 液滴表面 张力σ/ (mN·m-1) | 接触角 | 液滴黏度μ/(mPa·s) | 碰撞速度v0/(m·s-1) | 颗粒直径 dp/μm |
| 1.31 | 72 | α= 168.4°,β =91.4° | 1.04 | 1~500 | 1, 5, 25, 125 |
| 5.2 | |||||
| 常量 | 变量 | ||||
|---|---|---|---|---|---|
| 液滴-颗粒直径比Ω | 液滴黏度μ/(mPa·s) | 碰撞速度v0/(m·s-1) | 颗粒直径dp/μm | 液滴表面张力σ/(mN·m-1) | 接触角 |
| 1.31 | 1.04 | 1~500 | 1, 5, 25, 125 (ST1) | 72 (纯水) | α = 168.4°,β =91.4° |
| 1~500 | 1, 5, 25, 125 (ST1) | 34.2 (CTAB) | α =151.2°,β =15.2° | ||
Table 6 Condition parameter settings when the effects of surface tension and contact angle are investigated
| 常量 | 变量 | ||||
|---|---|---|---|---|---|
| 液滴-颗粒直径比Ω | 液滴黏度μ/(mPa·s) | 碰撞速度v0/(m·s-1) | 颗粒直径dp/μm | 液滴表面张力σ/(mN·m-1) | 接触角 |
| 1.31 | 1.04 | 1~500 | 1, 5, 25, 125 (ST1) | 72 (纯水) | α = 168.4°,β =91.4° |
| 1~500 | 1, 5, 25, 125 (ST1) | 34.2 (CTAB) | α =151.2°,β =15.2° | ||
| 常量 | 变量 | ||||
|---|---|---|---|---|---|
液滴- 颗粒直径比Ω | 液滴表面张力σ/(mN·m-1) | 液滴黏度μ/(mPa·s) | 颗粒 直径dp/μm | 碰撞速度 v0/(m·s-1) | 接触角 |
| 1.31 | 72 | 1.04 | 1, 5, 25, 125 | 1~500 | α = β = 168.4° |
| α = β = 151.2° | |||||
| α = β = 120° | |||||
| α = β = 100° | |||||
| α = β = 90° | |||||
| α = β = 80° | |||||
Table 7 The condition parameter setting is studied when the contact angle affects the rebound critical condition
| 常量 | 变量 | ||||
|---|---|---|---|---|---|
液滴- 颗粒直径比Ω | 液滴表面张力σ/(mN·m-1) | 液滴黏度μ/(mPa·s) | 颗粒 直径dp/μm | 碰撞速度 v0/(m·s-1) | 接触角 |
| 1.31 | 72 | 1.04 | 1, 5, 25, 125 | 1~500 | α = β = 168.4° |
| α = β = 151.2° | |||||
| α = β = 120° | |||||
| α = β = 100° | |||||
| α = β = 90° | |||||
| α = β = 80° | |||||
| 液滴无量纲参数 | 参数解释 |
|---|---|
| ρl 为液滴密度,dl 为液滴直径,vl 为尘雾相对速度,μl 为液滴动力黏度 | |
| μl 为液滴动力黏度,ρl 为液滴密度,dl 为液滴直径,σ为液滴表面张力 | |
| ρl 为液滴密度,vl 为尘雾相对速度,l为液滴特征长度(在本文中为液滴直径dl ),σ为液滴表面张力 |
Table 8 Dimensionless parameter interpretation
| 液滴无量纲参数 | 参数解释 |
|---|---|
| ρl 为液滴密度,dl 为液滴直径,vl 为尘雾相对速度,μl 为液滴动力黏度 | |
| μl 为液滴动力黏度,ρl 为液滴密度,dl 为液滴直径,σ为液滴表面张力 | |
| ρl 为液滴密度,vl 为尘雾相对速度,l为液滴特征长度(在本文中为液滴直径dl ),σ为液滴表面张力 |
| 条件编号 | 接触角 | 液滴表面张力σ/(mN·m-1) | 反弹边界条件方程 |
|---|---|---|---|
| 1 | 𝛼α = 168.4° β = 91.4° | 72 | 5.807 = 0.00965 ≤ Oh ≤ 0.0483 |
| 2 | 𝛼α = 168.4° β = 168.4° | 72 | 7.301 = 0.00965 ≤ Oh ≤ 0.0483 |
| 3 | 𝛼α = 151.2° β = 151.2° | 72 | 10.034 = 0.00965 ≤ Oh ≤ 0.0483 |
| 4 | 𝛼α = 120.0° β = 120.0° | 72 | 12.491 = 0.00965 ≤ Oh ≤ 0.0483 |
| 5 | 𝛼α = 100.0° β = 100.0° | 72 | 9.077 = 0.00965 ≤ Oh ≤ 0.0483 |
| 6 | 𝛼α = 90.0° β = 90.0° | 72 | 6.663= 0.00965 ≤ Oh ≤ 0.0311 |
| 7 | 𝛼α = 80.0° β = 80.0° | 72 | 当Oh=0.00965,Re = 219.99 当Oh ≥ 0.0193,无反弹现象 |
Table 9 Bounce-back boundary condition equations for different contact angles
| 条件编号 | 接触角 | 液滴表面张力σ/(mN·m-1) | 反弹边界条件方程 |
|---|---|---|---|
| 1 | 𝛼α = 168.4° β = 91.4° | 72 | 5.807 = 0.00965 ≤ Oh ≤ 0.0483 |
| 2 | 𝛼α = 168.4° β = 168.4° | 72 | 7.301 = 0.00965 ≤ Oh ≤ 0.0483 |
| 3 | 𝛼α = 151.2° β = 151.2° | 72 | 10.034 = 0.00965 ≤ Oh ≤ 0.0483 |
| 4 | 𝛼α = 120.0° β = 120.0° | 72 | 12.491 = 0.00965 ≤ Oh ≤ 0.0483 |
| 5 | 𝛼α = 100.0° β = 100.0° | 72 | 9.077 = 0.00965 ≤ Oh ≤ 0.0483 |
| 6 | 𝛼α = 90.0° β = 90.0° | 72 | 6.663= 0.00965 ≤ Oh ≤ 0.0311 |
| 7 | 𝛼α = 80.0° β = 80.0° | 72 | 当Oh=0.00965,Re = 219.99 当Oh ≥ 0.0193,无反弹现象 |
| α/(°) | β/(°) | Oh | Ω | 式(30)得出的Wecr | 式(31)得出的Wecr | 式(36)得出的Wecr | 前人文献中的Wecr | 来源 |
|---|---|---|---|---|---|---|---|---|
| 90 | 23 | 0.00211 | 0.31 | 128.59 | 115.43 | 62.43 | 63.21 | 文献[ |
| 90 | 23 | 0.00211 | 0.62 | 27.86 | 29.01 | 15.61 | 15.80 | |
| 90 | 23 | 0.00211 | 1.24 | 5.65 | 7.37 | 3.90 | 3.95 | |
| 90 | 23 | 0.00211 | 1.31 | 5.03 | 6.62 | 3.50 | 3.54 | |
| 160 | 23 | 0.00262 | 2.00 | 5.65 | 2.79 | 2.53 | < 3.96 | 文献[ |
| 160 | 23 | 0.00262 | 1.00 | 24.90 | 11.09 | 10.14 | 9.87~30.23 | |
| 160 | 23 | 0.00262 | 0.67 | 51.66 | 50.66 | 12.27 | 70~90 | |
| 160 | 23 | 0.00262 | 0.50 | 95.29 | 89.83 | 21.82 | 130~150 | |
| 160 | 23 | 0.00262 | 0.33 | 222.17 | 201.68 | 49.09 | 130~150 | |
| 125 | 23 | 0.00262 | 2.00 | 7.30 | 4.51 | 1.49 | < 3.96 | |
| 125 | 23 | 0.00262 | 1.00 | 16.82 | 17.96 | 5.95 | 9.87~30.23 | |
| 125 | 23 | 0.00262 | 0.67 | 40.73 | 40.73 | 4.65 | 70~90 | |
| 125 | 23 | 0.00262 | 0.50 | 75.90 | 72.20 | 8.27 | 130~150 | |
| 125 | 23 | 0.00262 | 0.33 | 178.60 | 162.06 | 18.60 | 130~150 | |
| 90 | 23 | 0.00262 | 2.00 | 2.46 | 2.78 | 1.40 | < 3.96 | |
| 90 | 23 | 0.00262 | 1.00 | 9.17 | 11.07 | 5.60 | 3.96~9.87 | |
| 90 | 23 | 0.00262 | 0.67 | 23.61 | 25.16 | 6.78 | 70~90 | |
| 90 | 23 | 0.00262 | 0.50 | 45.50 | 44.57 | 12.05 | 130~150 | |
| 90 | 23 | 0.00262 | 0.33 | 110.29 | 99.96 | 27.11 | 130~150 |
Table 10 Comparison of Wecr in previous studies with the results of this study
| α/(°) | β/(°) | Oh | Ω | 式(30)得出的Wecr | 式(31)得出的Wecr | 式(36)得出的Wecr | 前人文献中的Wecr | 来源 |
|---|---|---|---|---|---|---|---|---|
| 90 | 23 | 0.00211 | 0.31 | 128.59 | 115.43 | 62.43 | 63.21 | 文献[ |
| 90 | 23 | 0.00211 | 0.62 | 27.86 | 29.01 | 15.61 | 15.80 | |
| 90 | 23 | 0.00211 | 1.24 | 5.65 | 7.37 | 3.90 | 3.95 | |
| 90 | 23 | 0.00211 | 1.31 | 5.03 | 6.62 | 3.50 | 3.54 | |
| 160 | 23 | 0.00262 | 2.00 | 5.65 | 2.79 | 2.53 | < 3.96 | 文献[ |
| 160 | 23 | 0.00262 | 1.00 | 24.90 | 11.09 | 10.14 | 9.87~30.23 | |
| 160 | 23 | 0.00262 | 0.67 | 51.66 | 50.66 | 12.27 | 70~90 | |
| 160 | 23 | 0.00262 | 0.50 | 95.29 | 89.83 | 21.82 | 130~150 | |
| 160 | 23 | 0.00262 | 0.33 | 222.17 | 201.68 | 49.09 | 130~150 | |
| 125 | 23 | 0.00262 | 2.00 | 7.30 | 4.51 | 1.49 | < 3.96 | |
| 125 | 23 | 0.00262 | 1.00 | 16.82 | 17.96 | 5.95 | 9.87~30.23 | |
| 125 | 23 | 0.00262 | 0.67 | 40.73 | 40.73 | 4.65 | 70~90 | |
| 125 | 23 | 0.00262 | 0.50 | 75.90 | 72.20 | 8.27 | 130~150 | |
| 125 | 23 | 0.00262 | 0.33 | 178.60 | 162.06 | 18.60 | 130~150 | |
| 90 | 23 | 0.00262 | 2.00 | 2.46 | 2.78 | 1.40 | < 3.96 | |
| 90 | 23 | 0.00262 | 1.00 | 9.17 | 11.07 | 5.60 | 3.96~9.87 | |
| 90 | 23 | 0.00262 | 0.67 | 23.61 | 25.16 | 6.78 | 70~90 | |
| 90 | 23 | 0.00262 | 0.50 | 45.50 | 44.57 | 12.05 | 130~150 | |
| 90 | 23 | 0.00262 | 0.33 | 110.29 | 99.96 | 27.11 | 130~150 |
| [1] | 谢文博, 魏婉笛. 李珏: 职防路上 我看到繁星满天[R/OL]. (2023-04-28). . |
| Xie W B, Wei W D. Li Jue: I saw a starry sky on the way to work defense[R/OL]. (2023-04-28). . | |
| [2] | 袁亮. 煤矿粉尘防控与职业安全健康科学构想[J]. 煤炭学报, 2020, 45(1): 1-7. |
| Yuan L. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society, 2020, 45(1): 1-7. | |
| [3] | 王运敏, 李刚, 刘建国, 等. 我国非煤矿山职业健康防控技术研究现状、挑战及展望[J]. 金属矿山, 2024(9): 1-12. |
| Wang Y M, Li G, Liu J G, et al. Current status, challenges and prospects of occupational health control technology in China's non-coal mines[J]. Metal Mine, 2024(9): 1-12. | |
| [4] | 天津市消防救援总队. 已发32起!致235死, 475伤![R/OL]. (2023). . |
| Tianjin Fire rescue Corps. 32 cases have been sent! 235 dead, 475 wounded![R/OL]. (2023). . | |
| [5] | 王国法, 庞义辉, 任怀伟, 等. 矿山智能化建设的挑战与思考[J]. 智能矿山, 2022, 3(10): 2-15. |
| Wang G F, Pang Y H, Ren H W, et al. Challenges and thinking of mine intelligent construction[J]. Journal of Intelligent Mine, 2022, 3(10): 2-15. | |
| [6] | 马素平, 寇子明. 喷雾降尘机理的研究[J]. 煤炭学报, 2005, 30(3): 297-300. |
| Ma S P, Kou Z M. Study on mechanism of reducing dust by spray[J]. Journal of China Coal Society, 2005, 30(3): 297-300. | |
| [7] | 蒋仲安, 王亚朋, 许峰. 金属矿山气-水喷头雾化特性及降尘能力实验研究[J]. 中南大学学报(自然科学版), 2020, 51(1): 184-192. |
| Jiang Z A, Wang Y P, Xu F. Experimental study on atomization characteristics and dust reduction capacity of gas-water nozzles in metal mines[J]. Journal of Central South University (Science and Technology), 2020, 51(1): 184-192. | |
| [8] | 李刚, 吴超. 超声干雾抑尘机理及其技术参数优化研究[J]. 中国安全科学学报, 2015, 25(3): 108-113. |
| Li G, Wu C. Research on mechanism and parameters optimization of ultrasonic atomization technique for dust removal[J]. China Safety Science Journal, 2015, 25(3): 108-113. | |
| [9] | 张天. 超音速汲水式气动雾化细观动力学特性及捕尘机理研究[D]. 阜新: 辽宁工程技术大学, 2021. |
| Zhang T. Study on meso-dynamic characteristics and dust catching mechanism of supersonic pumping pneumatic atomization[D]. Fuxin: Liaoning Technical University, 2021. | |
| [10] | 金龙哲, 刘建国, 林清侠, 等. 矿山喷雾降尘技术研究与应用现状综述[J]. 金属矿山, 2023(7): 2-17. |
| Jin L Z, Liu J G, Lin Q X, et al. Review on the research and application of water spray dust-reduction technology in mines[J]. Metal Mine, 2023(7): 2-17. | |
| [11] | 田畅. X型旋流压力喷嘴雾化参数及降尘效率预测模型[D]. 湘潭: 湖南科技大学, 2019. |
| Tian C. Prediction model of atomization parameters and dust removal efficiency of X-type swirl pressure nozzle[D]. Xiangtan: Hunan University of Science and Technology, 2019. | |
| [12] | 徐翠翠. 喷嘴内外流场雾化特性及尘雾耦合降尘试验研究[D]. 青岛: 山东科技大学, 2018. |
| Xu C C. Experimental study on atomization characteristics of flow field inside and outside nozzle and dust suppression coupled with dust and fog[D]. Qingdao: Shandong University of Science and Technology, 2018. | |
| [13] | 房雪明. 综采面气液两相喷射微细水雾降尘技术及应用[D]. 淮南: 安徽理工大学, 2022. |
| Fang X M. Dust suppression technology and application of gas-liquid two-phase jet micro-water mist in fully mechanized mining face[D]. Huainan: Anhui University of Science & Technology, 2022. | |
| [14] | 宋皓然. 内混式空气雾化喷嘴结构优化与实验研究[D]. 淮南: 安徽理工大学, 2022. |
| Song H R. Structure optimization and experimental study of internal mixing air atomization nozzle[D]. Huainan: Anhui University of Science & Technology, 2022. | |
| [15] | 江丙友, 张琦, 朱志辉, 等. 湿式除尘器中气水喷雾降尘效果试验研究[J]. 金属矿山, 2023(7): 82-90. |
| Jiang B Y, Zhang Q, Zhu Z H, et al. Experimental study on dust reduction effect of air-water spray in wet dust collector[J]. Metal Mine, 2023(7): 82-90. | |
| [16] | 邬高高, 王鹏飞, 刘荣华, 等. 供气压力对流体型超声喷嘴雾化特性及降尘效率的影响[J]. 煤炭学报, 2021, 46(6): 1898-1906. |
| Wu G G, Wang P F, Liu R H, et al. Impact of air supply pressure on the atomization characteristics and dust removal efficiency of fluid ultrasonic nozzle[J]. Journal of China Coal Society, 2021, 46(6): 1898-1906. | |
| [17] | 李刚, 吴将有, 金龙哲, 等. 我国金属矿山粉尘防治技术研究现状及展望[J]. 金属矿山, 2021(1): 154-167. |
| Li G, Wu J Y, Jin L Z, et al. Study status and prospect of dust control technology for metal mines in China[J]. Metal Mine, 2021(1): 154-167. | |
| [18] | 李哲, 葛少成, 孙丽英, 等. 磁化荷电水雾最佳降尘参数确定实验研究[J]. 中国安全生产科学技术, 2022, 18(11): 77-84. |
| Li Z, Ge S C, Sun L Y, et al. Experimental study on determination of optimal dust reduction parameters of magnetized charged water mist[J]. Journal of Safety Science and Technology, 2022, 18(11): 77-84. | |
| [19] | 王晓楠. 表面活性剂复配对煤尘润湿性的协同效应研究[D]. 淮南: 安徽理工大学, 2020. |
| Wang X N. Study on synergistic effect of surfactant combination on coal dust wettability[D]. Huainan: Anhui University of Science & Technology, 2020. | |
| [20] | 李国春, 齐国栋, 孔帅, 等. 环保型泡沫灭火剂在变压器油表面的铺展特性研究[J]. 山东电力技术, 2024, 51(8): 67-77. |
| Li G C, Qi G D, Kong S, et al. Study on the spreading characteristics of environmentally friendly foam fire extinguishing agent on transformer oil surface [J]. Shandong Electric Power Technology, 2024, 51(8): 67-77. | |
| [21] | 周群. 煤矿井下活性磁化水降尘机制及技术研究[D]. 徐州: 中国矿业大学, 2019. |
| Zhou Q. Study on dust suppression mechanism and technology of active magnetized water in coal mine[D]. Xuzhou: China University of Mining and Technology, 2019. | |
| [22] | Mitra S, Doroodchi E, Pareek V, et al. Collision behaviour of a smaller particle into a larger stationary droplet[J]. Advanced Powder Technology, 2015, 26(1): 280-295. |
| [23] | Malgarinos I, Nikolopoulos N, Gavaises M. A numerical study on droplet-particle collision dynamics[J]. International Journal of Heat and Fluid Flow, 2016, 61: 499-509. |
| [24] | 韩方伟, 张金宜, 赵月, 等. 液滴在球形粉尘表面的动力润湿特性[J]. 煤炭学报, 2021, 46(8): 2614-2622. |
| Han F W, Zhang J Y, Zhao Y, et al. Kinetic wetting characteristics of droplet on the surface of spherical dust[J]. Journal of China Coal Society, 2021, 46(8): 2614-2622. | |
| [25] | Zhu X L, Wang D M, Craig V S J. Interaction of particles with surfactant thin films: implications for dust suppression[J]. Langmuir, 2019, 35(24): 7641-7649. |
| [26] | Li X, Dong Z Q, Wang L P, et al. A magnetic field coupling fractional step lattice Boltzmann model for the complex interfacial behavior in magnetic multiphase flows[J]. Applied Mathematical Modelling, 2023, 117: 219-250. |
| [27] | Li X, Dong Z Q, Li Y, et al. A fractional-step lattice Boltzmann method for multiphase flows with complex interfacial behavior and large density contrast[J]. International Journal of Multiphase Flow, 2022, 149: 103982. |
| [28] | Yoon I, Shin S. Direct numerical simulation of droplet collision with stationary spherical particle: a comprehensive map of outcomes[J]. International Journal of Multiphase Flow, 2021, 135: 103503. |
| [29] | Banitabaei S A, Amirfazli A. Droplet impact onto a solid sphere: effect of wettability and impact velocity[J]. Physics of Fluids, 2017, 29(6): 062111. |
| [30] | Banitabaei S A, Amirfazli A. Droplet impact onto a solid sphere in mid-air: effect of viscosity, gas density, and diameter ratio on impact outcomes[J]. Physics of Fluids, 2020, 32(3): 037102. |
| [31] | Pasandideh-Fard M, Chandra S, Mostaghimi J. A three-dimensional model of droplet impact and solidification[J]. International Journal of Heat and Mass Transfer, 2002, 45(11): 2229-2242. |
| [32] | Khojasteh D, Bordbar A, Kamali R, et al. Curvature effect on droplet impacting onto hydrophobic and superhydrophobic spheres[J]. International Journal of Computational Fluid Dynamics, 2017, 31(6/7/8): 310-323. |
| [33] | Liu X H, Zhao Y M, Chen S, et al. Numerical research on the dynamic characteristics of a droplet impacting a hydrophobic tube[J]. Physics of Fluids, 2017, 29(6): 062105. |
| [34] | Mundo C, Sommerfeld M, Tropea C. Droplet-wall collisions: experimental studies of the deformation and breakup process[J]. International Journal of Multiphase Flow, 1995, 21(2): 151-173. |
| [1] | Di WU, Bin HU, Jiatong JIANG. Experimental study and application analysis of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2025, 76(S1): 377-383. |
| [2] | Zhongyi LIU, Bin HU, Ruzhu WANG, Yun ZHAO, Ziwen CAI, Yunfeng LI. Electrification potential and heating system analysis in brewing industry [J]. CIESC Journal, 2025, 76(S1): 401-408. |
| [3] | Xiaowen MA, Yangfan CHENG, Shizhou LI, Ruping LIANG, Zhong'ao BAO. Effects of particle size on deflagration behaviors and temperature distribution characteristics of TiH2 dust cloud [J]. CIESC Journal, 2025, 76(8): 4341-4349. |
| [4] | Jinghao ZHANG, Yajun WANG, Yongkang ZHANG. Evaluation of chemical process operation status based on NRBO-SLSTM [J]. CIESC Journal, 2025, 76(8): 4145-4154. |
| [5] | Guoqing SUN, Haibo LI, Zhiyang DING, Wenhui GUO, Hao XU, Yanxia ZHAO. Research progress of silicon based anode materials [J]. CIESC Journal, 2025, 76(7): 3197-3211. |
| [6] | Jia KANG, Huan LIU, Haiyan LI, Maoliang LUO, Hong YAO. Corrosion behavior and coating performance of carbon steel in HCl/NaOH thermal medium in wide temperature zone [J]. CIESC Journal, 2025, 76(6): 2872-2885. |
| [7] | Haotian AN, Zhangye HAN, Muyao LU, Awu ZHOU, Jianrong LI. Promoting industrial application of MOF: scale-up preparation and shaping [J]. CIESC Journal, 2025, 76(5): 2011-2025. |
| [8] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [9] | Fei CHANG, Renbo SHI, Shihua LIU, Wenqian GAO, Yifei WANG, Bin ZHENG, Yixuan JIAO, Xingying LAN, Chunming XU, Yehua HAN. Product life cycle carbon footprint evaluation for petrochemical industry [J]. CIESC Journal, 2025, 76(2): 419-437. |
| [10] | Wenfeng FU, Zhenlei WANG, Xin WANG. An industrial process performance evaluation method based on unbalanced samples generated by DVAE-WAFFN-GAN [J]. CIESC Journal, 2025, 76(2): 769-786. |
| [11] | Wenfang GAO, Han CUI, Yiran SUN, Jiaqing PENG, Rui ZHU, Ran XIA, Xinyu ZHANG, Jiaqi LI, Xueliang WANG, Zhi SUN, Longyi LYU. A critical review on environmental impact assessment of typical metal production processes [J]. CIESC Journal, 2024, 75(9): 3056-3073. |
| [12] | Jianwen ZHANG, Tingsheng ZHAO, Pingyu WAN, Qianlin WANG, Zhan DOU, Bo XU. Discussion on integrated security control in process industry [J]. CIESC Journal, 2024, 75(6): 2375-2384. |
| [13] | Shuai ZHANG, Jianliang YU, Jianfei DING, Xingqing YAN. Experimental study on flame propagation and pressure characteristics of corn starch explosion under airflow transport conditions [J]. CIESC Journal, 2024, 75(5): 2072-2080. |
| [14] | Jian CAO, Hongliang QIAN, Xin FENG, Xiaohua LU. Three questions on carbon neutrality from the perspective of thermodynamics [J]. CIESC Journal, 2024, 75(11): 4378-4384. |
| [15] | Weiqi JIN, Yuerong WU, Xia WANG, Li LI, Su QIU, Pan YUAN, Minghe WANG. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks [J]. CIESC Journal, 2023, 74(S1): 32-44. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||