CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4145-4154.DOI: 10.11949/0438-1157.20250055
• Intelligent process engineering • Previous Articles Next Articles
Jinghao ZHANG(
), Yajun WANG(
), Yongkang ZHANG
Received:2025-01-13
Revised:2025-02-28
Online:2025-09-17
Published:2025-08-25
Contact:
Yajun WANG
通讯作者:
王亚君
作者简介:张景皓(2000—),男,硕士研究生,1293908438@qq.com
基金资助:CLC Number:
Jinghao ZHANG, Yajun WANG, Yongkang ZHANG. Evaluation of chemical process operation status based on NRBO-SLSTM[J]. CIESC Journal, 2025, 76(8): 4145-4154.
张景皓, 王亚君, 张永康. 基于NRBO-SLSTM的化工过程运行状态评价[J]. 化工学报, 2025, 76(8): 4145-4154.
Add to citation manager EndNote|Ris|BibTeX
| 编号 | 描述 | 单位 | 编号 | 描述 | 单位 |
|---|---|---|---|---|---|
| 1 | A进料 | km3/h | 9 | 产品分离器温度 | ℃ |
| 2 | D进料 | kg/h | 10 | 产品分离器压力 | kPa |
| 3 | E进料 | kg/h | 11 | 分离器塔底低流量 | m3/h |
| 4 | 总进料 | km3/h | 12 | 汽提塔压力 | kPa |
| 5 | 再循环流量 | km3/h | 13 | 汽提塔温度 | ℃ |
| 6 | 反应器进料速度 | km3/h | 14 | 反应器冷却水出口温度 | ℃ |
| 7 | 反应器温度 | ℃ | 15 | 分离器冷却水出口温度 | ℃ |
| 8 | 排放速度 | km3/h |
Table 1 Process variable selection
| 编号 | 描述 | 单位 | 编号 | 描述 | 单位 |
|---|---|---|---|---|---|
| 1 | A进料 | km3/h | 9 | 产品分离器温度 | ℃ |
| 2 | D进料 | kg/h | 10 | 产品分离器压力 | kPa |
| 3 | E进料 | kg/h | 11 | 分离器塔底低流量 | m3/h |
| 4 | 总进料 | km3/h | 12 | 汽提塔压力 | kPa |
| 5 | 再循环流量 | km3/h | 13 | 汽提塔温度 | ℃ |
| 6 | 反应器进料速度 | km3/h | 14 | 反应器冷却水出口温度 | ℃ |
| 7 | 反应器温度 | ℃ | 15 | 分离器冷却水出口温度 | ℃ |
| 8 | 排放速度 | km3/h |
| 反应器温度/℃ | 状态等级 | 数字标签 |
|---|---|---|
| 121.6~119.1 | 优 | 1 |
| 119.1~116.6 | 良 | 2 |
| 116.6~114.1 | 中 | 3 |
| 114.1~111.6 | 差 | 4 |
Table 2 Reactor temperature and corresponding state level
| 反应器温度/℃ | 状态等级 | 数字标签 |
|---|---|---|
| 121.6~119.1 | 优 | 1 |
| 119.1~116.6 | 良 | 2 |
| 116.6~114.1 | 中 | 3 |
| 114.1~111.6 | 差 | 4 |
| 真实值 | 预测值 | |
|---|---|---|
| 正例 | 反例 | |
| 正例 | TP(真正例) | FN(假反例) |
| 反例 | FP(假正例) | TN(真反例) |
Table 3 The meanings of TP、FP、FN and TN
| 真实值 | 预测值 | |
|---|---|---|
| 正例 | 反例 | |
| 正例 | TP(真正例) | FN(假反例) |
| 反例 | FP(假正例) | TN(真反例) |
| 评价指标 | LSTM | ISDAE | ILSTM | NRBO-SLSTM | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 精确率/% | 召回率/% | F1分数/% | 精确率/% | 召回率/% | F1分数/% | 精确率/% | 召回率/% | F1分数/% | 精确 率/% | 召回 率/% | F1分数/% | |
| 优 | 96.09 | 98.25 | 97.16 | 99.75 | 99.00 | 99.37 | 99.24 | 98.00 | 98.62 | 100.00 | 98.50 | 99.24 |
| 良 | 95.71 | 94.75 | 95.23 | 96.38 | 99.75 | 98.03 | 96.32 | 98.25 | 97.28 | 98.52 | 99.75 | 99.13 |
| 中 | 96.09 | 92.25 | 94.13 | 99.74 | 97.25 | 98.48 | 97.50 | 97.50 | 97.50 | 98.77 | 100.00 | 99.38 |
| 差 | 95.69 | 95.69 | 96.18 | 100.00 | 99.75 | 99.87 | 99.24 | 98.50 | 98.87 | 100.00 | 99.00 | 99.50 |
| 加权平均 | 95.69 | 95.69 | 95.67 | 98.97 | 98.94 | 98.94 | 98.08 | 98.06 | 98.07 | 99.32 | 99.31 | 99.31 |
Table 4 Evaluation results of four evaluation methods
| 评价指标 | LSTM | ISDAE | ILSTM | NRBO-SLSTM | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 精确率/% | 召回率/% | F1分数/% | 精确率/% | 召回率/% | F1分数/% | 精确率/% | 召回率/% | F1分数/% | 精确 率/% | 召回 率/% | F1分数/% | |
| 优 | 96.09 | 98.25 | 97.16 | 99.75 | 99.00 | 99.37 | 99.24 | 98.00 | 98.62 | 100.00 | 98.50 | 99.24 |
| 良 | 95.71 | 94.75 | 95.23 | 96.38 | 99.75 | 98.03 | 96.32 | 98.25 | 97.28 | 98.52 | 99.75 | 99.13 |
| 中 | 96.09 | 92.25 | 94.13 | 99.74 | 97.25 | 98.48 | 97.50 | 97.50 | 97.50 | 98.77 | 100.00 | 99.38 |
| 差 | 95.69 | 95.69 | 96.18 | 100.00 | 99.75 | 99.87 | 99.24 | 98.50 | 98.87 | 100.00 | 99.00 | 99.50 |
| 加权平均 | 95.69 | 95.69 | 95.67 | 98.97 | 98.94 | 98.94 | 98.08 | 98.06 | 98.07 | 99.32 | 99.31 | 99.31 |
| [1] | 褚菲, 郝莉莉, 王福利. 复杂工业过程运行状态评价方法回顾与展望[J]. 控制与决策, 2024, 39(3): 705-718. |
| Chu F, Hao L L, Wang F L. Review and prospect of evaluation methods for operation state of complex industrial processes[J]. China Industrial Economics, 2024, 39(3): 705-718. | |
| [2] | Bu K Q, Wang F L, Liu Y. Operating performance assessment based on stacked sparse denoising auto-encoder for gold hydrometallurgy processes[C]//2020 Chinese Control and Decision Conference (CCDC). IEEE, 2020: 2904-2909. |
| [3] | Bu K Q, Liu Y, Wang F L. Operating performance assessment based on multi-source heterogeneous information with deep learning for smelting process of electro-fused magnesium furnace[J]. ISA Transactions, 2022, 128: 357-371. |
| [4] | 高学金, 刘腾飞, 徐子东, 等. 基于循环自动编码器的间歇过程故障监测[J]. 化工学报, 2020, 71(7): 3172-3179. |
| Gao X J, Liu T F, Xu Z D, et al. Intermittent process fault monitoring based on recurrent autoencoder[J]. CIESC Journal, 2020, 71(7): 3172-3179. | |
| [5] | 曹晨鑫, 杜玉鹏, 王昕, 等. 基于Ms-LWPLS的化工过程网络化性能分级评估方法[J]. 化工学报, 2019, 70(S1): 141-149. |
| Cao C X, Du Y P, Wang X, et al. Hierarchical evaluation method of chemical process networking performance based on Ms-LWPLS[J]. CIESC Journal, 2019, 70(S1): 141-149. | |
| [6] | Deng X G, Wang L. Multimode process fault detection method using local neighborhood standardization based multi-block principal component analysis[C]//2017 29th Chinese Control and Decision Conference (CCDC). IEEE, 2017: 5615-5621. |
| [7] | Xu J, Gu Y J, Ma S X. Data based online operational performance optimization with varying work conditions for steam-turbine system[J]. Applied Thermal Engineering, 2019, 151: 344-353. |
| [8] | Dong Y N, Qin S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring[J]. Journal of Process Control, 2018, 67: 1-11. |
| [9] | Vo H X, Durlofsky L J. Data assimilation and uncertainty assessment for complex geological models using a new PCA-based parameterization[J]. Computational Geosciences, 2015, 19(4): 747-767. |
| [10] | Liu Y, Wang F L, Chang Y Q. Operating optimality assessment based on optimality related variations and nonoptimal cause identification for industrial processes[J]. Journal of Process Control, 2016, 39: 11-20. |
| [11] | Liu Y, Chang Y Q, Wang F L. Online process operating performance assessment and nonoptimal cause identification for industrial processes[J]. Journal of Process Control, 2014, 24(10): 1548-1555. |
| [12] | Chu F, Dai B W, Ma X P, et al. A minimum-cost modeling method for nonlinear industrial process based on multimodel migration and Bayesian model averaging method[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(2): 947-956. |
| [13] | Chu F, Dai W, Shen J, et al. Online complex nonlinear industrial process operating optimality assessment using modified robust total kernel partial M-regression[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 775-785. |
| [14] | 徐静, 王振雷, 王昕. 基于非线性动态全局局部保留投影算法的化工过程故障检测[J]. 化工学报, 2020, 71(12): 5655-5663. |
| Xu J, Wang Z L, Wang X. Fault detection for chemical process based on nonlinear dynamic global-local preserving projections[J]. CIESC Journal, 2020, 71(12): 5655-5663. | |
| [15] | Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3168-3176. |
| [16] | 褚菲, 傅逸灵, 赵旭, 等. 基于ISDAE模型的复杂工业过程运行状态评价方法及应用[J]. 自动化学报, 2021, 47(4): 849-863. |
| Chu F, Fu Y L, Zhao X, et al. Operating performance assessment method and application for complex industrial process based on ISDAE model[J]. Acta Automatica Sinica, 2021, 47(4): 849-863. | |
| [17] | Shao H D, Xia M, Han G J, et al. Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer convolutional neural network and thermal images[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3488-3496. |
| [18] | Zou X Y, Zhao C H. Concurrent assessment of process operating performance with joint static and dynamic analysis[J]. IEEE Transactions on Industrial Informatics, 2019, 16(4): 2776-2786. |
| [19] | Wang Y L, Yang H B, Yuan X F, et al. Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder[J]. Journal of Process Control, 2020, 92: 79-89. |
| [20] | Yuan X F, Zhou J, Huang B, et al. Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 3721-3730. |
| [21] | Chai Z L, Song W, Wang H L, et al. A semi-supervised auto-encoder using label and sparse regularizations for classification[J]. Applied Soft Computing, 2019, 77: 205-217. |
| [22] | 王佩. 煤泥浮选过程模型仿真及其运行状态评价[D]. 徐州: 中国矿业大学, 2022. |
| Wang P. Model simulation of slime flotation process and its operation state evaluation[D]. Xuzhou: China University of Mining and Technology, 2022. | |
| [23] | 廖霜霜, 褚菲, 傅逸灵, 等. 基于ILSTM网络的工业过程运行状态评价[J]. 控制理论与应用, 2024, 41(11): 2112-2120. |
| Liao S S, Chu F, Fu Y L, et al. Operating performance assessment of industrial process based on ILSTM network[J]. Control Theory & Applications, 2024, 41(11): 2112-2120. | |
| [24] | 褚菲, 许杨, 尚超, 等. 基于静-动态特性协同感知的复杂工业过程运行状态评价[J]. 自动化学报, 2023, 49(8): 1621-1634. |
| Chu F, Xu Y, Shang C, et al. Evaluation of complex industrial process operating state based on static-dynamic cooperative perception[J]. Acta Automatica Sinica, 2023, 49(8): 1621-1634. | |
| [25] | Liu Y, Ma R C, Wang F L, et al. Inner-phase and inter-phase analysis based operating performance assessment and nonoptimal cause identification for multiphase batch processes[J]. Chemical Engineering Research and Design, 2018, 134: 292-308. |
| [26] | Liu Y, Wang X J, Wang F L, et al. Gaussian process regression and Bayesian inference based operating performance assessment for multiphase batch processes[J]. Industrial & Engineering Chemistry Research, 2018, 57(21): 7232-7244. |
| [27] | Zou X Y, Chang Y Q, Wang F L, et al. Process operating performance optimality assessment with coexistence of quantitative and qualitative information[J]. The Canadian Journal of Chemical Engineering, 2018, 96(1): 179-188. |
| [28] | Zou X Y, Wang F L, Chang Y Q, et al. Process operating performance optimality assessment and non-optimal cause identification under uncertainties[J]. Chemical Engineering Research and Design, 2017, 120: 348-359. |
| [29] | Feng L J, Zhao C H, Sun Y X. Dual attention-based encoder-decoder: a customized sequence-to-sequence learning for soft sensor development[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(8): 3306-3317. |
| [30] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
| Wang Y L, Pan Y Q, Liu C L. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction[J]. CIESC Journal, 2022, 73(9): 3994-4002. | |
| [31] | Sowmya R, Premkumar M, Jangir P. Newton-raphson-based optimizer: a new population-based metaheuristic algorithm for continuous optimization problems[J]. Engineering Applications of Artificial Intelligence, 2024, 128: 107532. |
| [1] | Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler [J]. CIESC Journal, 2025, 76(S1): 426-434. |
| [2] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [3] | Zhihong CHEN, Jiawei WU, Xiaoling LOU, Junxian YUN. Recent advances in machine learning for biomanufacturing of chemicals [J]. CIESC Journal, 2025, 76(8): 3789-3804. |
| [4] | Xiaolong WU, Xiaohuang HUANG, Yuan XIAO, Linghai SHAN, Jiahui YE, Guomin CUI. Reserve empty node strategy applied to optimization of heat exchanger networks [J]. CIESC Journal, 2025, 76(7): 3388-3402. |
| [5] | Yulun WU, Zhenlei WANG, Xin WANG. Contrastive learning based on method for identifying operating conditions of ethylene cracking furnace [J]. CIESC Journal, 2025, 76(6): 2733-2742. |
| [6] | Hanchuan ZHANG, Chao SHANG, Wenxiang LYU, Dexiang HUANG, Yaning ZHANG. Operating conditions pattern recognition and yield prediction for FCCU based on unsupervised time series clustering [J]. CIESC Journal, 2025, 76(6): 2781-2790. |
| [7] | Lin LI, Mingmei WANG, Erwei SONG, Wenwen WANG, Yaochang ZHANG, Erqiang WANG. Thermodynamic analysis and optimization of isoprene/n-pentane separation process [J]. CIESC Journal, 2025, 76(6): 2549-2558. |
| [8] | Fuyu WANG, Xuanyi ZHOU. Leakage estimation in a chemical tank farm with unsteady adjoint equation and genetic algorithm [J]. CIESC Journal, 2025, 76(6): 3104-3114. |
| [9] | Yifei WANG, Jingjie REN, Mingshu BI, Haotian YE. Multi-objective optimization of cyclohexane oxidation process parameters based on inherent safety and economic performance [J]. CIESC Journal, 2025, 76(6): 2722-2732. |
| [10] | Jingxin ZHANG, Jiaojie HE, Qingwang CAI, Ziyi KANG, Yusi YANG, Tong WANG, Xiantao CAO, Liwei YANG. Prediction of COD concentration in wastewater treatment plant effluent based on secondary decomposition and BiLSTM [J]. CIESC Journal, 2025, 76(6): 2859-2871. |
| [11] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
| [12] | Hanxiao ZHANG, Ruiqi WANG, Yating ZHANG. Prediction of scale factor of heat exchangers based on CNN-LSTM neural network [J]. CIESC Journal, 2025, 76(4): 1671-1679. |
| [13] | Fazheng WANG, Lin SUI, Weili XIONG. TTPA-LSTM soft sensor modeling for multi-sampling rate data [J]. CIESC Journal, 2025, 76(4): 1635-1646. |
| [14] | Yaqi HOU, Wei ZHANG, Hong ZHANG, Feiyu GAO, Jiahua HU. Optimization of LBM multiphase flow models based on machine learning and particle swarm algorithm [J]. CIESC Journal, 2025, 76(3): 1120-1132. |
| [15] | Ye YANG, Jiangang LU. Mooney viscosity prediction modeling based on fusion Transformer [J]. CIESC Journal, 2025, 76(1): 266-282. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||