| [1] |
Tong Y L, Wang K, Liu J Y, et al. Refined assessment and decomposition analysis of carbon emissions in high-energy intensive industrial sectors in China[J]. Science of the Total Environment, 2023, 872: 162161.
|
| [2] |
国家统计局. 2024中国统计年鉴[M]. 北京: 中国统计出版社, 2024.
|
|
National Bureau of Statistics of China. 2024 China Statistical Yearbook[M]. Beijing: China Statistics Press, 2024.
|
| [3] |
Cheng K, Zhou X Y, Wang Y, et al. Analysis of emission characteristics and driving forces of air pollutants and GHG from coal-fired industrial boilers in China[J]. Journal of Cleaner Production, 2023, 430: 139768.
|
| [4] |
Tong Y L, Gao J J, Yue T, et al. Spatio-temporal heterogeneity and synergistic effects of air pollutants and CO2 emissions from Chinese coal-fired industrial boilers[J]. Resources, Conservation and Recycling, 2024, 204: 107504.
|
| [5] |
Li Y, An H L, Li W T, et al. Thermodynamic, energy consumption and economic analyses of the novel cogeneration heating system based on condensed waste heat recovery[J]. Energy Conversion and Management, 2018, 177: 671-681.
|
| [6] |
俞金翔, 王一波, 国建鸿, 等. 基于分时电价的热泵供热系统相变储热应用研究[J]. 储能科学与技术, 2024, 13(2): 669-676.
|
|
Yu J X, Wang Y B, Guo J H, et al. Application of phase change heat storage in heat pump heating system based on time-of-use electricity pricing[J]. Energy Storage Science and Technology, 2024, 13(2): 669-676.
|
| [7] |
张香平, 海彬. 基于智慧能源系统的低碳化工过程[J]. 中国科学基金, 2023, 37(2): 238-245.
|
|
Zhang X P, Hai B. Low-carbon chemical processes based on smart energy systems[J]. Bulletin of National Natural Science Foundation of China, 2023, 37(2): 238-245.
|
| [8] |
Zhou S, Wang Y, Yuan Z Y, et al. Peak energy consumption and CO2 emissions in China's industrial sector[J]. Energy Strategy Reviews, 2018, 20: 113-123.
|
| [9] |
Liu R, Li Q S, Zhao Y Q. Analysis of existing problems and improvement schemes for substituting electricity for scattered coal in China[J]. Sustainability, 2017, 9(5): 744.
|
| [10] |
Yan H Z, Zhang C, Shao Z, et al. The underestimated role of the heat pump in achieving China's goal of carbon neutrality by 2060[J]. Engineering, 2023, 23: 13-18.
|
| [11] |
张力. 从高效利用能源视角看建筑冷热源优化节能[J]. 暖通空调, 2021, 51(S2): 43-46.
|
|
Zhang L. Optimal energy saving of building cold and heat sources from the perspective of efficient energy utilization[J]. Heating Ventilating & Air Conditioning, 2021, 51(S2): 43-46.
|
| [12] |
连梦雅, 谈莹莹, 王林, 等. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319.
|
|
Lian M Y, Tan Y Y, Wang L, et al. Heating performance of air preheated integrated ground water heat pump air-conditioning system[J]. CIESC Journal, 2023, 74(S1): 311-319.
|
| [13] |
陈子丹, 罗会龙, 刘锦春, 等. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036.
|
|
Chen Z D, Luo H L, Liu J C, et al. Analysis of heating performance of CO2 air-source heat pump in cold region[J]. CIESC Journal, 2018, 69(9): 4030-4036.
|
| [14] |
Hu B, Wu D, Wang L W, et al. Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression[J]. Frontiers in Energy, 2017, 11(4): 493-502.
|
| [15] |
Jeong J, Jung H S, Lee J W, et al. Hybrid cooling and heating absorption heat pump cycle with thermal energy storage[J]. Energy, 2023, 283: 129027.
|
| [16] |
Yan H Z, Hu B, Wang R Z. Air-source heat pump for distributed steam generation: a new and sustainable solution to replace coal-fired boilers in China[J]. Advanced Sustainable Systems, 2020, 4(11): 2000118.
|
| [17] |
董益秀, 王如竹. 高温热泵的循环、工质研究及应用展望[J]. 化工学报, 2023, 74(1): 133-144.
|
|
Dong Y X, Wang R Z. High temperature heat pump: cycle configurations, working fluids and application potentials[J]. CIESC Journal, 2023, 74(1): 133-144.
|
| [18] |
吴迪, 胡斌, 王如竹, 等. 采用自然工质水的高温热泵系统性能分析[J]. 化工学报, 2018, 69(S2):95-100.
|
|
Wu D, Hu B, Wang R Z, et al. Performance analysis of high temperature heat pump system using natural working fluid water[J]. CIESC Journal, 2018, 69(S2): 95-100.
|
| [19] |
张迪, 杨刚, 刘冬鹏, 等. 新型低GWP高温热泵工质HFO-1234ze(Z)的研究进展[J]. 化工学报, 2020, 71(9):3995-4005.
|
|
Zhang D, Yang G, Liu D P, et al. Research progress of low GWP working fluid HFO-1234ze(Z) for high temperature heat pumps[J]. CIESC Journal, 2020, 71(9): 3995-4005.
|
| [20] |
唐丽云, 朱孟江. 酱香型白酒生产工艺及关键工艺原理简述[J]. 中国食品工业, 2022, (9): 101-104.
|
|
Tang L Y, Zhu M J. Brief introduction of production technology and key technological principles of Maotai-flavor liquor[J]. China Food Industry, 2022, (9): 101-104.
|
| [21] |
陶勇, 芮俊鹏, 李家宝, 等. 浓香型白酒窖泥中细菌和古菌的组成与多样性[J]. 化工学报, 2014, 65(5): 1800-1807.
|
|
Tao Y, Rui J P, Li J B, et al. Microbial community compositions and diversity in pit mud of Chinese Luzhou-flavor liquor[J]. CIESC Journal, 2014, 65(5): 1800-1807.
|
| [22] |
庄名扬. 中国白酒香味物质形成机理及酿酒工艺的调控[J]. 四川食品与发酵, 2007, 43(2): 1-6.
|
|
Zhuang M Y. The production mechanism of the fragrance in the Chinese spirit & the operation of the spirit brewing[J]. Sichuan Food and Fermentation, 2007, 43(2): 1-6.
|
| [23] |
Cantu Rodriguez R, Palacios-Garcia E J, Deconinck G. Redesign for flexibility through electrification: multi-objective optimization of the operation of a multi-energy industrial steam network[J]. Applied Energy, 2024, 362: 122981.
|
| [24] |
Lechtenböhmer S, Nilsson L J, Åhman M, et al. Decarbonising the energy intensive basic materials industry through electrification–Implications for future EU electricity demand[J]. Energy, 2016, 115: 1623-1631.
|
| [25] |
Khanna N, Fridley D, Zhou N, et al. Energy and CO2 implications of decarbonization strategies for China beyond efficiency: modeling 2050 maximum renewable resources and accelerated electrification impacts[J]. Applied Energy, 2019, 242: 12-26.
|
| [26] |
Sun J, Wang Y W, Qin Y, et al. A review of super-high-temperature heat pumps over 100℃[J]. Energies, 2023, 16(12): 4591.
|
| [27] |
Yu X H, Zhang Y F, Deng N, et al. Experimental performance of high temperature heat pump with near-azeotropic refrigerant mixture[J]. Energy and Buildings, 2014, 78: 43-49.
|
| [28] |
Zhang Y, Zhang Y F, Yu X H, et al. Analysis of a high temperature heat pump using BY-5 as refrigerant[J]. Applied Thermal Engineering, 2017, 127: 1461-1468.
|
| [29] |
Ma X L, Zhang Y F, Fang L, et al. Performance analysis of a cascade high temperature heat pump using R245fa and BY-3 as working fluid[J]. Applied Thermal Engineering, 2018, 140: 466-475.
|
| [30] |
Kim D H, Park H S, Kim M S. Optimal temperature between high and low stage cycles for R134a/R410A cascade heat pump based water heater system[J]. Experimental Thermal and Fluid Science, 2013, 47: 172-179.
|
| [31] |
Kim D H, Kim M S. The effect of water temperature lift on the performance of cascade heat pump system[J]. Applied Thermal Engineering, 2014, 67(1/2): 273-282.
|