CIESC Journal ›› 2025, Vol. 76 ›› Issue (S1): 409-417.DOI: 10.11949/0438-1157.20241251
• Energy and environmental engineering • Previous Articles
Guorui HUANG1(
), Yao ZHAO1,2, Mingxi XIE1, Erjian CHEN1, Yanjun DAI1,2(
)
Received:2024-11-05
Revised:2024-11-27
Online:2025-06-26
Published:2025-06-25
Contact:
Yanjun DAI
黄国瑞1(
), 赵耀1,2, 谢明熹1, 陈尔健1, 代彦军1,2(
)
通讯作者:
代彦军
作者简介:黄国瑞(1999—),男,博士研究生,guorui1999@sjtu.edu.cn
基金资助:CLC Number:
Guorui HUANG, Yao ZHAO, Mingxi XIE, Erjian CHEN, Yanjun DAI. Experimental study on a novel waste heat recovery system based on desiccant coated exchanger in data center[J]. CIESC Journal, 2025, 76(S1): 409-417.
黄国瑞, 赵耀, 谢明熹, 陈尔健, 代彦军. 一种新型数据中心余热回收系统实验与分析[J]. 化工学报, 2025, 76(S1): 409-417.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 |
|---|---|
| 换热器尺寸/mm | 1050×681×74, 650×681×74 |
| 干燥剂种类 | 柱层层析硅胶 |
| 翅片厚度/mm | 0.15 |
| 翅片间距/mm | 2.00 |
| 铜管外径/mm | 10.5 |
| 铜管内径/mm | 9.87 |
| 管排横向间距/mm | 21.30 |
| 管排纵向间距/mm | 24.60 |
| 管排数 | 3 |
Table 1 Dimensions of desiccant-coated heat exchanger
| 参数 | 数值 |
|---|---|
| 换热器尺寸/mm | 1050×681×74, 650×681×74 |
| 干燥剂种类 | 柱层层析硅胶 |
| 翅片厚度/mm | 0.15 |
| 翅片间距/mm | 2.00 |
| 铜管外径/mm | 10.5 |
| 铜管内径/mm | 9.87 |
| 管排横向间距/mm | 21.30 |
| 管排纵向间距/mm | 24.60 |
| 管排数 | 3 |
| 部件 | DCHE A | |||
|---|---|---|---|---|
| 除湿 | 预再生 | 再生 | 预除湿 | |
| 电动水阀1 | 0 | 1 | 0 | 1 |
| 电动水阀2 | 0 | 0 | 1 | 0 |
| 电动水阀3 | 1 | 0 | 0 | 0 |
| 电动水阀4 | 0 | 1 | 0 | 1 |
| 电动水阀5 | 0 | 1 | 0 | 1 |
| 电动水阀6 | 0 | 0 | 1 | 0 |
| 电动水阀7 | 1 | 0 | 0 | 0 |
| 循环水泵A | 1 | 0 | 1 | 0 |
| 循环水泵B | 0 | 1 | 0 | 1 |
Table 2 States of water valve and pump under different states of DCHE A
| 部件 | DCHE A | |||
|---|---|---|---|---|
| 除湿 | 预再生 | 再生 | 预除湿 | |
| 电动水阀1 | 0 | 1 | 0 | 1 |
| 电动水阀2 | 0 | 0 | 1 | 0 |
| 电动水阀3 | 1 | 0 | 0 | 0 |
| 电动水阀4 | 0 | 1 | 0 | 1 |
| 电动水阀5 | 0 | 1 | 0 | 1 |
| 电动水阀6 | 0 | 0 | 1 | 0 |
| 电动水阀7 | 1 | 0 | 0 | 0 |
| 循环水泵A | 1 | 0 | 1 | 0 |
| 循环水泵B | 0 | 1 | 0 | 1 |
| 测量参数 | 传感器 | 量程 | 精度 |
|---|---|---|---|
| 空气温度 | 温湿度传感器LFH10A | -20~60℃ | ±0.3℃ |
| 空气相对湿度 | 温湿度传感器LFH10A | 20%~80% | ±3%RH |
| 风速 | 叶轮式风速仪Testo 410i | 0.4~30.0 m/s | ±0.1 m/s |
| 功率 | 青智ZW3415B | 0~10 kW | ±0.5% |
| 热水水温 | PT100温度传感器 | -50~200℃ | ±0.1℃ |
| 热水流量 | 电磁流量计 | 1.2~5.0 m3/h | — |
Table 3 Sensor parameters
| 测量参数 | 传感器 | 量程 | 精度 |
|---|---|---|---|
| 空气温度 | 温湿度传感器LFH10A | -20~60℃ | ±0.3℃ |
| 空气相对湿度 | 温湿度传感器LFH10A | 20%~80% | ±3%RH |
| 风速 | 叶轮式风速仪Testo 410i | 0.4~30.0 m/s | ±0.1 m/s |
| 功率 | 青智ZW3415B | 0~10 kW | ±0.5% |
| 热水水温 | PT100温度传感器 | -50~200℃ | ±0.1℃ |
| 热水流量 | 电磁流量计 | 1.2~5.0 m3/h | — |
| 工况 | 测试风量/(m3/h) | 除湿时长/s | 预再生时长/s | 热水温度/℃ | 热水流量/(m3/h) | 最大除湿量/(g/kg) | 平均除湿量/(g/kg) |
|---|---|---|---|---|---|---|---|
| 1 | 2700 | 240 | 60 | 50 | 2 | 4.34 | 2.79 |
| 2 | 2700 | 360 | 60 | 50 | 2 | 3.67 | 2.07 |
| 3 | 2700 | 480 | 60 | 50 | 2 | 3.75 | 2.14 |
| 4 | 3600 | 240 | 60 | 50 | 2 | 3.91 | 2.73 |
| 5 | 3600 | 360 | 60 | 50 | 2 | 3.71 | 2.12 |
| 6 | 3600 | 480 | 60 | 50 | 2 | 4.17 | 2.58 |
| 7 | 4500 | 240 | 60 | 50 | 2 | 3.56 | 2.55 |
| 8 | 4500 | 360 | 60 | 50 | 2 | 3.84 | 2.94 |
| 9 | 4500 | 480 | 60 | 50 | 2 | 3.63 | 2.31 |
| 10 | 4500 | 240 | 60 | 50 | 3 | 3.23 | 2.14 |
| 11 | 4500 | 360 | 60 | 50 | 3 | 3.58 | 2.25 |
| 12 | 4500 | 480 | 60 | 50 | 3 | 3.44 | 1.99 |
Table 4 Average and maximum dehumidification under different working conditions
| 工况 | 测试风量/(m3/h) | 除湿时长/s | 预再生时长/s | 热水温度/℃ | 热水流量/(m3/h) | 最大除湿量/(g/kg) | 平均除湿量/(g/kg) |
|---|---|---|---|---|---|---|---|
| 1 | 2700 | 240 | 60 | 50 | 2 | 4.34 | 2.79 |
| 2 | 2700 | 360 | 60 | 50 | 2 | 3.67 | 2.07 |
| 3 | 2700 | 480 | 60 | 50 | 2 | 3.75 | 2.14 |
| 4 | 3600 | 240 | 60 | 50 | 2 | 3.91 | 2.73 |
| 5 | 3600 | 360 | 60 | 50 | 2 | 3.71 | 2.12 |
| 6 | 3600 | 480 | 60 | 50 | 2 | 4.17 | 2.58 |
| 7 | 4500 | 240 | 60 | 50 | 2 | 3.56 | 2.55 |
| 8 | 4500 | 360 | 60 | 50 | 2 | 3.84 | 2.94 |
| 9 | 4500 | 480 | 60 | 50 | 2 | 3.63 | 2.31 |
| 10 | 4500 | 240 | 60 | 50 | 3 | 3.23 | 2.14 |
| 11 | 4500 | 360 | 60 | 50 | 3 | 3.58 | 2.25 |
| 12 | 4500 | 480 | 60 | 50 | 3 | 3.44 | 1.99 |
| 工况 | 参数 | ||||
|---|---|---|---|---|---|
| 1 | 4 min, 2700 m3/h, 2 t/h | 8.85 | 13.88 | 25.98 | 40.08 |
| 2 | 6 min, 2700 m3/h, 2 t/h | 6.50 | 11.70 | 21.30 | 41.94 |
| 3 | 8 min, 2700 m3/h, 2 t/h | 6.75 | 11.96 | 21.23 | 41.32 |
| 4 | 4 min, 3600 m3/h, 2 t/h | 8.49 | 12.24 | 32.25 | 53.28 |
| 5 | 6 min, 3600 m3/h, 2 t/h | 6.56 | 11.61 | 26.12 | 46.03 |
| 6 | 8 min, 3600 m3/h, 2 t/h | 7.92 | 12.97 | 31.24 | 52.56 |
| 7 | 4 min, 4500 m3/h, 2 t/h | 6.74 | 9.47 | 34.00 | 48.65 |
| 8 | 6 min, 4500 m3/h, 2 t/h | 7.80 | 11.24 | 41.94 | 61.98 |
| 9 | 8 min, 4500 m3/h, 2 t/h | 6.11 | 9.69 | 32.10 | 54.06 |
| 10 | 4 min, 4500 m3/h, 3 t/h | 5.57 | 8.48 | 22.81 | 34.76 |
| 11 | 6 min, 4500 m3/h, 3 t/h | 5.85 | 9.40 | 24.72 | 43.60 |
| 12 | 8 min, 4500 | 5.16 | 9.06 | 23.25 | 48.11 |
Table 5 COPd and ηre of waste heat recovery subsystem under different working conditions
| 工况 | 参数 | ||||
|---|---|---|---|---|---|
| 1 | 4 min, 2700 m3/h, 2 t/h | 8.85 | 13.88 | 25.98 | 40.08 |
| 2 | 6 min, 2700 m3/h, 2 t/h | 6.50 | 11.70 | 21.30 | 41.94 |
| 3 | 8 min, 2700 m3/h, 2 t/h | 6.75 | 11.96 | 21.23 | 41.32 |
| 4 | 4 min, 3600 m3/h, 2 t/h | 8.49 | 12.24 | 32.25 | 53.28 |
| 5 | 6 min, 3600 m3/h, 2 t/h | 6.56 | 11.61 | 26.12 | 46.03 |
| 6 | 8 min, 3600 m3/h, 2 t/h | 7.92 | 12.97 | 31.24 | 52.56 |
| 7 | 4 min, 4500 m3/h, 2 t/h | 6.74 | 9.47 | 34.00 | 48.65 |
| 8 | 6 min, 4500 m3/h, 2 t/h | 7.80 | 11.24 | 41.94 | 61.98 |
| 9 | 8 min, 4500 m3/h, 2 t/h | 6.11 | 9.69 | 32.10 | 54.06 |
| 10 | 4 min, 4500 m3/h, 3 t/h | 5.57 | 8.48 | 22.81 | 34.76 |
| 11 | 6 min, 4500 m3/h, 3 t/h | 5.85 | 9.40 | 24.72 | 43.60 |
| 12 | 8 min, 4500 | 5.16 | 9.06 | 23.25 | 48.11 |
| 1 | 陈佳. 数据中心绿色节能技术探究[J]. 智能建筑与智慧城市, 2024(11): 111-113. |
| Chen J. Exploration of green and energy saving technologies in data centers[J]. Intelligent Building and Smart City, 2024(11):111-113. | |
| 2 | Liu Y, Wei X, Xiao J, et al. Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers[J]. Global Energy Interconnection, 2020, 3(3): 272-282. |
| 3 | 陈姝伊, 张泉, 邹思凯, 等. 湖水源数据中心余热回收系统性能模拟研究: 以东江湖大数据产业园为例[J]. 科学技术与工程, 2023, 23(22): 9502-9508. |
| Chen S Y, Zhang Q, Zou S K, et al. Simulation on performance of waste heat recovery system with lake water in data centers: a case study of Dongjiang Lake data center park[J]. Science Technology and Engineering, 2023, 23(22): 9502-9508. | |
| 4 | Huang P, Copertaro B, Zhang X, et al. A review of data centers as prosumers in district energy systems: renewable energy integration and waste heat reuse for district heating[J]. Applied Energy, 2020, 258: 114109. |
| 5 | Ebrahimi K, Jones G F, Fleischer A S. Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration[J]. Applied Energy, 2015, 139: 384-397. |
| 6 | Oró E, Allepuz R, Martorell I, et al. Design and economic analysis of liquid cooled data centres for waste heat recovery: a case study for an indoor swimming pool[J]. Sustainable Cities and Society, 2018, 36: 185-203. |
| 7 | 崔科, 马长明, 檀志恒, 等. 数据中心余热在城镇供热中的应用研究[J]. 建筑节能(中英文), 2023, 51(7): 74-78. |
| Cui K, Ma C M, Tan Z H, et al. Application of waste heat of data center in urban heating[J]. Building Energy Efficiency, 2023, 51(7): 74-78. | |
| 8 | Araya S, Jones G F, Fleischer A S. Organic rankine cycle as a waste heat recovery system for data centers: design and construction of a prototype[C]//2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2018: 850-858. |
| 9 | Ebrahimi K, Jones G F, Fleischer A S. The viability of ultra low temperature waste heat recovery using organic Rankine cycle in dual loop data center applications[J]. Applied Thermal Engineering, 2017, 126: 393-406. |
| 10 | 彭佳杰, 葛天舒, 潘权稳, 等. 基于数据中心余热回收的硅胶-水吸附式制冷系统的实验研究[J]. 制冷学报, 2019, 40(4): 59-65. |
| Peng J J, Ge T S, Pan Q W, et al. Experimental study on silica gel-water adsorption refrigeration system for waste heat recovery in data center[J]. Journal of Refrigeration, 2019, 40(4): 59-65. | |
| 11 | 赵耀. 除湿换热器热湿传递机理及其应用研究[D]. 上海: 上海交通大学, 2016. |
| Zhao Y. Study on heat and moisture transfer mechanism of dehumidification heat exchanger and its application[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
| 12 | 杨田雨, 葛天舒. 干燥剂吸附等温曲线对除湿换热器除湿性能的影响[J]. 化工学报, 2022, 73(12): 5367-5375. |
| Yang T Y, Ge T S. Effect of desiccant adsorption isotherm on dehumidification performance of desiccant coated heat exchanger[J]. CIESC Journal, 2022, 73(12): 5367-5375. | |
| 13 | Sun, X,Y, et al. Experimental and comparison study on heat and moisture transfer characteristics of desiccant coated heat exchanger with variable structure sizes[J].Applied thermal engineering: Design, Processes, Equipment, Economics, 2018, 137:32-46. |
| 14 | Chai S, Zhao Y, Ge T, et al. Experimental study on a fresh air heat pump desiccant dehumidification system using rejected heat[J].Applied Thermal Engineering, 2020, 179: 115742. |
| 15 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
| 16 | 田德允, 翁志刚. 湿空气含湿量的解析计算[J]. 佳木斯大学学报(自然科学版), 1999, 17(2): 149-151. |
| Tian D Y, Weng Z G. Analytic calculation of containing-moisture capacity in moist air[J]. Journal of Jiamusi University (Natural Science Edition), 1999, 17(2): 149-151. |
| [1] | Xingliang PEI, Cuiping YE, Yingli PEI, Wenying LI. Selective adsorption and separation of xylene isomers by alkali-modified MIL-53(Cr) [J]. CIESC Journal, 2025, 76(S1): 258-267. |
| [2] | Zihang WU, Zhenyuan XU, Jinfang YOU, Quanwen PAN, Ruzhu WANG. Cooling system for deep well drilling equipment based on adsorption cold storage technology [J]. CIESC Journal, 2025, 76(S1): 309-317. |
| [3] | Di WU, Bin HU, Jiatong JIANG. Experimental study and application analysis of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2025, 76(S1): 377-383. |
| [4] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [5] | Haoran SUN, Chengyun WU, Yanmeng WANG, Jingnan SUN, Renyu HU, Zhongdi DUAN. Modeling and experimental study on the evaporation characteristics of liquid droplets subject to thermal convection [J]. CIESC Journal, 2025, 76(S1): 123-132. |
| [6] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [7] | Linhui YUAN, Yu WANG. Heat dissipation performance of single server immersion jet liquid cooling system [J]. CIESC Journal, 2025, 76(S1): 160-169. |
| [8] | Hao QI, Yujie WANG, Shenhui LI, Qi ZOU, Yiqun LIU, Zhiping ZHAO. Molecular simulation study on adsorption and diffusion of C3H6 and C3H8 on Co/Zn-ZIFs [J]. CIESC Journal, 2025, 76(5): 2313-2326. |
| [9] | Chunhui TAO, Yinhui LI, Yu FU, Ran DUAN, Zeyi ZHAO, Yufeng TANG, Gang ZHANG, Heping MA. Selective adsorption and purification of low-concentration Kr gas using various adsorbents [J]. CIESC Journal, 2025, 76(5): 2358-2366. |
| [10] | Yue ZHANG, Jiaxin LIU, Jing MA, Yi LIU. Recent progress on metal-organic framework membranes towards uranium separation from seawater [J]. CIESC Journal, 2025, 76(5): 2087-2100. |
| [11] | Ruijie MA, Zixuan HUANG, Xueqian GUAN, Guangjin CHEN, Bei LIU. Efficient ethane and methane separation using ZIF-8/DMPU slurry [J]. CIESC Journal, 2025, 76(5): 2262-2269. |
| [12] | Jialang HU, Mingyuan JIANG, Lyuming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2025, 76(5): 1973-1996. |
| [13] | Zhichao XU, Zhendong YU, Haofeng WU, Peiwen WU, Hongxiang WU, Yanhong CHAO, Wenshuai ZHU, Zhichang LIU, Chunming XU. Preparation of acid-rich 13X molecular sieve and its ultra-deep adsorption removal of mercaptan in biodiesel [J]. CIESC Journal, 2025, 76(5): 2198-2208. |
| [14] | Pengtao GUO, Ting WANG, Bo XUE, Yunpan YING, Dahuan LIU. Ultramicroporous MOF with multiple adsorption sites for CH4/N2 separation [J]. CIESC Journal, 2025, 76(5): 2304-2312. |
| [15] | Lei TANG, Zhenfei WANG, Congli LI, Jiahui YANG, Hao ZHENG, Qi SHI, Jinxiang DONG. CO working capacity and operating conditions of Co-MOF-74 and Mg-MOF-74 [J]. CIESC Journal, 2025, 76(5): 2279-2293. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||