CIESC Journal ›› 2014, Vol. 65 ›› Issue (7): 2770-2775.DOI: 10.3969/j.issn.0438-1157.2014.07.038
Previous Articles Next Articles
HU Ju1, PAN Yalin1, LI Hansheng1, WU Qin1, WANG Jinfu2
Received:
2014-04-01
Revised:
2014-04-16
Online:
2014-07-05
Published:
2014-07-05
胡菊1, 潘亚林1, 黎汉生1, 吴芹1, 王金福2
通讯作者:
黎汉生, 王金福
CLC Number:
HU Ju, PAN Yalin, LI Hansheng, WU Qin, WANG Jinfu. Preparation and properties of cerium modified Cu-based catalysts for methanol synthesis[J]. CIESC Journal, 2014, 65(7): 2770-2775.
胡菊, 潘亚林, 黎汉生, 吴芹, 王金福. 铈改性甲醇合成铜基催化剂的制备及其性能[J]. 化工学报, 2014, 65(7): 2770-2775.
[1] | Li Z, Yan S W, Fan H. Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by microwave irradiation for liquid phase methanol synthesis[J]. Fuel, 2013, 106: 178-186 |
[2] | Liu L, Zhao T S, Ma Q X, Shen Y F. Promoting effect of polyoxyethylene octylphenol ether on Cu/ZnO catalysts for low-temperature methanol synthesis[J]. Journal of Natural Gas Chemistry, 2009, 18: 375-378 |
[3] | Fujita S, Moribe S, Kanamori Y, Kakudate M, Takezawa N. Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2-effects of the calcination and reduction conditions on the catalytic performance[J]. Applied Catalysis A: General, 2001, 207: 121-128 |
[4] | Olah G A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie: International Edition, 2005, 44: 2636-2639 |
[5] | Pontzen F, Liebner W, Gronemann V, Rothaemel M, Ahlers B. CO2-based methanol and DME-Efficient technologies for industrial scale production[J]. Catalysis Today, 2011, 171: 242-250 |
[6] | Wang L L, Yang L M, Zhang Y H, Ding W, Chen S P, Fang W P, Yang Y Q. Promoting effect of an aluminum emulsion on catalytic performance of Cu-based catalysts for methanol synthesis from syngas[J]. Fuel Processing Technology, 2010, 91: 723-728 |
[7] | Meshkini F, Taghizadeh M, Bahmani M. Investigating the effect of metal oxide additives on the properties of Cu/ZnO/Al2O3 catalysts in methanol synthesis from syngas using factorial experimental design[J]. Fuel, 2010, 89: 170-175 |
[8] | Phan X K, Bakhtiary-Davijany H, Myrstad R, Pfeifer P, Venvik H J, Holmen A. Preparation and performance of Cu-based monoliths for methanol synthesis[J]. Applied Catalysis A: General, 2011, 405: 1-7 |
[9] | Liu X M, Lu G Q, Yan Z F, Beltramini J. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2[J]. Industrial & Engineering Chemistry Research, 2003, 42: 6518-6530 |
[10] | Arena F, Barbera K, Italiano G, Spadaro L, Frusteri F. Synthesis characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. Journal of Catalysis, 2007, 249: 185-194 |
[11] | Zhang Y P, Fei J H, Yu Y M, Zheng X M. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified gamma-Al2O3[J]. Energy Conversion and Management, 2006, 47: 3360-3367 |
[12] | Yang C, Ma Z Y, Zhao N, Wei W, Hu T D, Sun Y H. Methanol synthesis from CO2-rich syngas over a ZrO2 doped Cu/ZnO catalyst[J]. Catalysis Today, 2006, 115: 222-227 |
[13] | Arena F, Italiano G, Barbera K, Bonura G, Spadaro L, Frusteri F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Applied Catalysis A: General, 2008, 350: 16-23 |
[14] | Cen Yaqing(岑亚青), Li Xiaonian(李小年), Liu Huazhang(刘化章). Preparation of copper-based catalysts for methanol synthesis by acid-alkali-based alternate precipitation method[J]. Chinese Journal of Catalysis(催化学报), 2006, 27(3): 210-216 |
[15] | Chen H Y, Lin J, Tan K L, Li J. Comparative studies of manganese-doped copper based catalysts: the promoter effect of Mn on methanol synthesis[J]. Applied Surface Science, 1998, 126: 323-331 |
[16] | Li J L, Inui T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminium oxides, precipitated at different pHs and temperatures[J]. Applied Catalysis A: General, 1996, 137:105- 117 |
[17] | Fang D, Liu Z, Meng S, Wang L, Xu L, Wang H. Influence of aging time on the properties of precursors of CuO/ZnO catalysts for methanol synthesis[J]. Journal of Natural Gas Chemistry, 2005, 14: 107-114 |
[18] | Schild C, Wokaun A, Baiker A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study(Ⅱ): Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity[J]. Journal of Molecular Catalysis, 1990, 63: 243-254 |
[19] | Weigel J, Koeppel R A, Baiker A, Wokaun A. Surface species in CO and CO2 hydrogenation over copper/zirconia: on the methanol synthesis mechanism[J]. Langmuir, 1996, 12: 5319-5329 |
[20] | Fisher I A, Bell A T. In situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2[J]. Journal of Catalysis, 1998, 178: 153-173 |
[21] | Saussey J, Lavalley J C. An in situ FT-IR study of adsorbed species on a Cu-Zn-Al2O4 methanol catalyst under 1 MPa pressure and at 525 K: effect of the H2/CO/CO2 feed stream composition[J]. Journal of Molecular Catalysis, 1989, 50: 343-353 |
[22] | Meitzner G, Iglesia E. New insights into methanol synthesis catalysts from X-ray absorption spectroscopy[J]. Catalysis Today, 1999, 53: 433-441 |
[23] | Ta Na(塔娜), Liu Jingyue(刘景月), Shen Wenjie(申文杰). Tuning the shape of ceria nanomaterials for catalytic applications[J]. Chinese Journal of Catalysis(催化学报), 2013, 34(5): 838-850 |
[24] | Chowdhury S, Lin K S. Synthesis and characterization of 1D ceria nanomaterials for CO oxidation and steam reforming of methanol[J]. Journal of Nanomaterials, 2011, 2011: 1-16 |
[25] | Fornasiero P, Balducci G, Monte R D, Kaspar J, Sergo V, Gubitosa G, Ferrero A, Graziani M. Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2[J]. Journal of Catalysis, 1996, 164: 173-183 |
[26] | Tsubaki N, Fujimoto K. Promotional SMSI effect on supported palladium catalysts for methanol synthesis[J]. Topics in Catalysis, 2003, 22: 325-335 |
[27] | Shen W J, Ichihashi Y, Matsumura Y. A comparative study of palladium and copper catalysts in methanol synthesis[J]. Catalysis Letters, 2002, 79: 125-127 |
[28] | Zhu Z H, He D H. CO hydrogenation to iso-C4 hydrocarbons over CeO2-TiO2 catalysts[J]. Fuel, 2008, 87: 2229-2235 |
[29] | Liu Y Y, Murata K, Inaba M, Takahara I, Okabe K. Mixed alcohols synthesis from syngas over Cs- and Ni-modified Cu/CeO2 catalysts[J]. Fuel, 2013, 104: 62-69 |
[30] | Yu X H, Tu S T, Wang Z D, Qi Y S. Development of a microchannel reactor concerning steam reforming of methanol[J]. Chemical Engineering Journal, 2006, 116: 123-132 |
[31] | Shen W J, Ichihashi Y, Matsumura Y. Methanol synthesis from carbon monoxide and hydrogen over ceria-supported copper catalyst prepared by a coprecipitation method[J]. Catalysis Letters, 2002, 83(1/2): 33-35 |
[32] | Pokrovski K A, Bell A T. An investigation of the factors influencing the activity of Cu/CexZr1-xO2 for methanol synthesis via CO hydrogenation[J]. Journal of Catalysis, 2006, 241(2): 276-286 |
[33] | Pokrovski K A, Rhodes M D, Bell A T. Effects of cerium incorporation into zirconia on the activity of Cu/ZrO2 for methanol synthesis via CO hydrogenation[J]. Journal of Catalysis, 2005, 235: 368-377 |
[34] | Wang J B, Lee H K, Huang T J. Synergistic catalysis of carbon dioxide hydrogenation into methanol by yttria-doped ceria/gamma-alumina-supported copper oxide catalysts: effect of support and dopant[J]. Catalysis Letters, 2002, 83(1/2): 79-86 |
[35] | Jiang Xiaoyuan(蒋晓原), Zhou Renxian(周仁贤), Mao Jianxin(毛建新), et al. Effect of dispersity and catalytic activity of CuO/Al2O3 modified by CeO2[J]. Journal of Molecular Catalysis(分子催化), 1999, 13(3): 17-21 |
[36] | Xia Zengmin(夏增敏), Wen Lixiong(文利雄), Song Jirui(宋继瑞), Chen Jianfeng(陈建峰). Preparation and characterization of eggshell CuO/ZnO/SiO2 particles modified by Ce[J]. Journal of Process Engineering(过程工程学报), 2007, 7(4): 812-816 |
[37] | Klier K. Methanol synthesis[J]. Advanced in Catalysis, 1982, 31: 243-313 |
[38] | Liu Zhijian(刘志坚), Liao Jianjun(廖建军),Tan Jingpin(谭径品), Li Dadong(李大东). Effect of CeO2 on property of Cu-ZnO catalyst and its performance in CO2 hydrogenation[J]. Industrial Catalysis(工业催化), 2001, 11(6): 41-44 |
[1] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
[2] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
[3] | Gang WANG, Xiaoping CHE, Shiyong WANG, Jieshan QIU. Carbon electrodes modified with water-soluble charged polymer binder for enhanced capacitive deionization performance [J]. CIESC Journal, 2022, 73(4): 1763-1771. |
[4] | ZHOU Ye, XIAO Huixia, WANG Yifei, YU Guangsuo. Study on improving slurryability of lignite based on coal blending and surface modification [J]. CIESC Journal, 2021, 72(4): 2233-2240. |
[5] | HE Pengpeng, ZHAO Song, MAO Chenyue, WANG Zhi, WANG Jixiao. Research progress of solvent-resistant composite nanofiltration membrane [J]. CIESC Journal, 2021, 72(2): 727-747. |
[6] | WANG Liming, DU Miao, SHAN Guorong, LU Qing, SONG Yihu. Research progress of rubber composite with low dynamic heat generation [J]. CIESC Journal, 2021, 72(2): 863-875. |
[7] | Zilong TANG,Fanfan XIAO,Yuhua YIN,Senyu LI,Jinglun WANG. Recent advances in application of functional organosilane for organic-inorganic composite solid electrolyte [J]. CIESC Journal, 2021, 72(10): 5002-5015. |
[8] | Chenxi CAO, Tianyuan CHEN, Xiaoxu DING, Hai HUANG, Jing XU, Yifan HAN. Kinetics study on supported indium-based catalysts in carbon dioxide hydrogenation [J]. CIESC Journal, 2019, 70(10): 3985-3993. |
[9] | Yaqiang DUAN, Xianfeng HE, Tong WU, Yanping ZHANG, Zhiguo ZHAO. Preparation and application of graphene lubricant additive with extreme-pressure performance [J]. CIESC Journal, 2019, 70(1): 360-369. |
[10] | ZHOU Yixuan, WANG Zhi, DONG Chenxi, WANG Yao, WANG Jixiao. Biguanidine functionalized polyvinylamine modified reverse osmosis membrane with improved anti-bacterial property [J]. CIESC Journal, 2018, 69(2): 858-865. |
[11] | SUN Xuefei, GAO Yongqiang, ZHAO Song, ZHANG Wen, WANG Zhi, WANG Xiaolin. Ultrafiltration membrane with antibacterial and antifouling properties by grafting guanidine based polymer [J]. CIESC Journal, 2018, 69(11): 4869-4878. |
[12] | WANG Ying, ZHANG Lingbo, GU Xingsheng. Application of modified elitist teaching-learning-based optimization algorithm to process optimization of methanol synthesis [J]. CIESC Journal, 2017, 68(8): 3141-3151. |
[13] | HU Ping, CHANG Tian, CHEN Zhenyu, KANG Lu, ZHOU Yuhang, YANG Fan, YANG Zhanlin, DU Jinjing. Surface modification and application in biomedicine and environmental protection of magnetic Fe3O4 nanoparticles [J]. CIESC Journal, 2017, 68(7): 2641-2652. |
[14] | SHI Lei, ZHANG Wanying, WANG Yuxin, Tsubaki Noritatsu. Research developments of low-temperature methanol synthesis [J]. CIESC Journal, 2015, 66(9): 3333-3340. |
[15] | WANG Zhiyong, DENG Hui, ZHANG Ting, JIANG Xin. Activity of Cu-based catalysts prepared using adsorption phase reaction technique in first step of methanol synthesis [J]. CIESC Journal, 2015, 66(8): 3050-3056. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 825
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||