CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 863-875.DOI: 10.11949/0438-1157.20201246
• Reviews and monographs • Previous Articles Next Articles
WANG Liming1(),DU Miao2(),SHAN Guorong1(),LU Qing3,SONG Yihu2
Received:
2020-09-01
Revised:
2020-11-17
Online:
2021-02-05
Published:
2021-02-05
Contact:
DU Miao,SHAN Guorong
通讯作者:
杜淼,单国荣
作者简介:
王丽明(1997—),女,博士研究生,基金资助:
CLC Number:
WANG Liming, DU Miao, SHAN Guorong, LU Qing, SONG Yihu. Research progress of rubber composite with low dynamic heat generation[J]. CIESC Journal, 2021, 72(2): 863-875.
王丽明, 杜淼, 单国荣, 卢青, 宋义虎. 低生热橡胶复合体系的研究进展[J]. 化工学报, 2021, 72(2): 863-875.
Add to citation manager EndNote|Ris|BibTeX
1 | Akutagawa K, Hamatani S, Nashi T. The new interpretation for the heat build-up phenomena of rubbery materials during deformation[J]. Polymer, 2015, 66: 201-209. |
2 | Liu Y Y, Tian Z H, Xie Z M, et al. Dynamic viscoelasticity of polyester/rubber composites under cyclic loading[J]. Journal of Materials Science & Technology, 2005, 21(3): 367-370. |
3 | 杨波. 低生热天然橡胶复合材料的性能研究[D]. 太原: 中北大学, 2020. |
Yang B. Preparation and performance research of low heat build-up natural rubber composites[D]. Taiyuan: North University of China, 2020. | |
4 | 张立群. 橡胶纳米复合材料基础与应用[M]. 北京: 化学工业出版社, 2018. |
Zhang L Q. Rubber Nanocomposites: Basics and Applications[M]. Beijing: Chemical Industry Press, 2018. | |
5 | Medalia A I. Heat generation in elastomer compounds: causes and effects[J]. Rubber Chemistry and Technology, 1991, 64(3): 481-492. |
6 | 初红艳, 许康健, 孙冬明, 等. 挤压旋转的橡胶辊滞后生热温度场分析[J]. 中国机械工程, 2019, 30(18): 2217-2223. |
Chu H Y, Xu K J, Sun D M, et al. Temperature field analysis of hysteresis heat of squeezing and rotating rubber rollers[J]. China Mechanical Engineering, 2019, 30(18): 2217-2223. | |
7 | Fang Q H, Zhou S L, Wang N, et al. The research on relationship between heat generation and crosslinking density of vulcanized rubber[J]. Materials Science Forum, 2011, 704/705: 541-545. |
8 | 郭飞, 张兆想, 宋炜, 等. 橡胶硫化过程数值模拟研究进展[J]. 化工学报, 2020, 71(8): 3393-3402. |
Guo F, Zhang Z X, Song W, et al. Research progress in numerical simulation of rubber vulcanization[J]. CIESC Journal, 2020, 71(8): 3393-3402. | |
9 | Luo W B, Hu X L, Wang C H, et al. Frequency- and strain-amplitude-dependent dynamical mechanical properties and hysteresis loss of CB-filled vulcanized natural rubber[J]. International Journal of Mechanical Sciences, 2010, 52(2): 168-174. |
10 | Luo W B, Yin B Y, Hu X L, et al. Modeling of the heat build-up of carbon black filled rubber[J]. Polymer Testing, 2018, 69: 116-124. |
11 | Zhi J Y, Wang S P, Zhang M J, et al. Numerical analysis of the dependence of rubber hysteresis loss and heat generation on temperature and frequency[J]. Mechanics of Time-Dependent Materials, 2019, 23(4): 427-442. |
12 | 周雄, 胡小玲, 肖世武, 等. 硫化橡胶动态力学性能的分数阶微分Kelvin模型[J]. 高分子材料科学与工程, 2012, 28(4): 187-190. |
Zhou X, Hu X L, Xiao S W, et al. Application of fractional differential kelvin model to dynamic mechanical properties of carbon black filled vulcanized rubber[J]. Polymer Materials Science & Engineering, 2012, 28(4): 187-190. | |
13 | 王军, 孙大刚, 刘世忠, 等. 考虑热力耦合的橡胶减振器阻尼特性[J]. 振动.测试与诊断, 2018, 38(4): 859-865, 880. |
Wang J, Sun D G, Liu S Z, et al. Damping properties of rubber isolator considering thermomechanical coupling[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(4): 859-865, 880. | |
14 | Tomita Y, Nakata S, Naito M, et al. Evaluation of deformation behavior of silica-filled rubber under monotonic and cyclic straining[J]. Key Engineering Materials, 2013, 535/536: 185-188. |
15 | 陈勇, 单国荣. 丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵反相乳液聚合动力学[J]. 化工学报, 2018, 69(2): 563-569. |
Chen Y, Shan G R. Kinetics of acrylamide and 2-methylacryloylxyethyltrimethyl ammonium chloride in inverse emulsion polymerization[J]. CIESC Journal, 2018, 69(2): 563-569. | |
16 | Li W B, Zhang X J, Shang Y Y, et al. Investigation of dynamic heat generation and transfer behavior and energy dissipation for nonlinear synchronous belt transmission[J]. Applied Thermal Engineering, 2018, 144: 457-468. |
17 | Banic M, Stamenkovic D, Miltenovic V, et al. Prediction of heat generation in rubber or rubber-metal springs[J]. Thermal Science, 2012, 16(suppl. 2): 527-539. |
18 | Yoo S, Uddin M S, Heo H, et al. Thermoviscoelastic modeling of a nonpneumatic tire with a lattice spoke[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(2): 241-252. |
19 | Li Y, Liu W Y, Frimpong S. Effect of ambient temperature on stress, deformation and temperature of dump truck tire[J]. Engineering Failure Analysis, 2012, 23: 55-62. |
20 | Tang T, Johnson D, Smith R E, et al. Numerical evaluation of the temperature field of steady-state rolling tires[J]. Applied Mathematical Modelling, 2014, 38(5/6): 1622-1637. |
21 | 余真珠, 马连湘. 基于径向基网络的炭黑填充胶生热率模型重构[J]. 工程热物理学报, 2010, 31(9): 1563-1566. |
Yu Z Z, Ma L X. Model reconstruction of heat generation ratio of carbon black-filled rubber based on RBF NN[J]. Journal of Engineering Thermophysics, 2010, 31(9): 1563-1566. | |
22 | 郑强, 税波, 沈烈. 炭黑填充多组分高分子导电复合材料的研究进展[J]. 高分子材料科学与工程, 2006, 22(4): 15-18. |
Zheng Q, Shui B, Shen L. Recent progress in studies on the conductive composites composed of multi-component polymers filled with carbon black[J]. Polymer Materials Science & Engineering, 2006, 22(4): 15-18. | |
23 | Liu X, Zhao S H, Zhang X Y, et al. Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites[J]. Polymer, 2014, 55(8): 1964-1976. |
24 | Qin X, Wang J D, Han B Y, et al. Novel design of eco-friendly super elastomer materials with optimized hard segments micro-structure: toward next-generation high-performance tires[J]. Frontiers in Chemistry, 2018, 6: 240. |
25 | Zhang C F, Tang Z H, Guo B C, et al. Significantly improved rubber-silica interface via subtly controlling surface chemistry of silica[J]. Composites Science and Technology, 2018, 156: 70-77. |
26 | Quiteria V R S, Sierra C A, Gómez-Fatou J M, et al. Tin-coupled styrene-butadiene rubbers (SBRs). Relationship between coupling type and properties[J]. Die Angewandte Makromolekulare Chemie, 1997, 246(1): 85-96. |
27 | 赵素合, 张建明, 张兴英, 等. 星形SSBR的偶联程度与性能的关系[J]. 合成橡胶工业, 2002, 25(4): 223-226. |
Zhao S H, Zhang J M, Zhang X Y, et al. Relations between coupling degree of star SSBR and its properties[J]. China Synthetic Rubber Industry, 2002, 25(4): 223-226. | |
28 | 焦书科. 橡胶化学与物理导论[M]. 北京: 化学工业出版社, 2009. |
Jiao S K. Introduction to Rubber Chemistry and Physics [M]. Beijing: Chemical Industry Press, 2009. | |
29 | 吴丹. 橡胶技术中氧化锌(ZnO)的重要性[J]. 橡胶参考资料, 2020, 50(1): 49-54. |
Wu D. The importance of zinc oxide in rubber technology[J]. Rubber References, 2020, 50(1): 49-54. | |
30 | González N, Custal M D À, Rodríguez D, et al. Influence of ZnO and TiO2 particle sizes in the mechanical and dielectric properties of vulcanized rubber[J]. Materials Research, 2017, 20(4): 1082-1091. |
31 | Thomas S P, Mathew E J, Marykutty C V. Synthesis and effect of surface modified nano ZnO in natural rubber vulcanization[J]. Journal of Applied Polymer Science, 2012, 124(4): 3099-3107. |
32 | Wang R, Xie C Z, Zeng L L, et al. Thermal decomposition behavior and kinetics of nanocomposites at low-modified ZnO content[J]. RSC Advances, 2019, 9(2): 790-800. |
33 | 刘路, 黄若晨, 熊传溪. 改性纳米氧化锌/硅橡胶导热复合材料的性能[J]. 胶体与聚合物, 2016, 34(1): 3-6. |
Liu L, Huang R C, Xiong C X. Properties of modified nano-ZnO/silicon rubber thermal conductivity composites[J]. Chinese Journal of Colloid & Polymer, 2016, 34(1): 3-6. | |
34 | 王振华, 卢咏来, 张立群. 纳米氧化锌/EPDM复合材料的性能研究[J]. 橡胶工业, 2009, 56(10): 581-587. |
Wang Z H, Lu Y L, Zhang L Q. Properties of nano-zinc oxide/EPDM composite[J]. China Rubber Industry, 2009, 56(10): 581-587. | |
35 | 曹智, 苏小莉, 李庆华, 等. 纳米氧化锌的气流粉碎改性及应用研究[J]. 功能材料, 2010, 41(3): 537-540. |
Cao Z, Su X L, Li Q H, et al. Jet grinding and surface modification of ZnO nanoparticles and its application[J]. Journal of Functional Materials, 2010, 41(3): 537-540. | |
36 | Heideman G, Noordermeer J W M, Datta R N, et al. Effect of zinc complexes as activator for sulfur vulcanization in various rubbers[J]. Rubber Chemistry and Technology, 2005, 78(2): 245-257. |
37 | Wu C F. Coordination crosslinking of nitrile rubber filled with copper sulfate particles[J]. Chinese Journal of Polymer Science, 2007, 25(5): 447-459. |
38 | 应宗荣. 高分子材料成形工艺学[M]. 北京: 高等教育出版社, 2010. |
Ying Z R. Polymer Material Forming Technology[M]. Beijing: Higher Education Press, 2010. | |
39 | 柳召刚, 邢志超, 郝伟, 等. 促进剂M-La的合成及对天然橡胶的硫化促进作用[J]. 合成橡胶工业, 2020, 43(1): 66-70. |
Liu Z G, Xing Z C, Hao W, et al. Synthesis of accelerator M-La and its effect on vulcanization of natural rubber[J]. China Synthetic Rubber Industry, 2020, 43(1): 66-70. | |
40 | 陈方涛, 姜磊, 陈锦春. 醛胺类橡胶硫化促进剂808和DHP的合成研究[J]. 应用化工, 2013, 42(4): 765-767. |
Chen F T, Jiang L, Chen J C. Study on synthesis of aldehyde-amines type thiofide 808 and DHP[J]. Applied Chemical Industry, 2013, 42(4): 765-767. | |
41 | 王凡, 李杰, 丁宁, 等. 多种促进剂并用硫黄硫化三元乙丙橡胶机理研究[J]. 橡胶工业, 2018, 65(7): 747-751. |
Wang F, Li J, Ding N, et al. Mechanism research of blended accelerators in sulfur curing systems of EPDM[J]. China Rubber Industry, 2018, 65(7): 747-751. | |
42 | 韦伟梅, 谭海生, 刘磊, 等. 促进剂ZDTP及其与促进剂ZMBT并用对天然胶乳性能的影响[J]. 橡胶工业, 2017, 64(11): 665-669. |
Wei W M, Tan H S, Liu L, et al. Effects of accelerators ZDTP and ZDTP/ZMBT blend on properties of NR latex[J]. China Rubber Industry, 2017, 64(11): 665-669. | |
43 | 张胡松, 彭华龙. 次磺酰胺类硫化促进剂的研究及应用进展[J]. 广州化工, 2010, 38(5): 80-81. |
Zhang H S, Peng H L. Research progress and application of sulfenamide vulcanization accelerater [J]. Guangzhou Chemical Industry, 2010, 38(5): 80-81. | |
44 | 温煜明, 董栋. 一种新型安全氯丁橡胶硫化促进剂SRM102[J]. 橡胶参考资料, 2016, 46(2): 25-29. |
Wen Y M, Dong D. A new safety chloroprene rubber vulcanization accelerator SRM102 is presented[J]. Rubber References, 2016, 46(2): 25-29. | |
45 | Kurian T, George K E, Francis D J. Effect of vulcanization temperature on the cure characteristics and vulcanizate properties of natural rubber and styrene-butadiene rubber[J]. Die Angewandte Makromolekulare Chemie, 1988, 162(1): 123-134. |
46 | 李鑫, 徐桂勇, 赵菲, 等. 硫化温度对天然橡胶硫化胶网络结构及性能的影响[J]. 合成橡胶工业, 2014, 37(4): 308-311. |
Li X, Xu G Y, Zhao F, et al. Influence of curing temperature on network structures and properties of natural rubber vulcanizates[J]. China Synthetic Rubber Industry, 2014, 37(4): 308-311. | |
47 | Mihara S, Datta R N, Noordermeer J W M. Flocculation in silica reinforced rubber compounds[J]. Rubber Chemistry and Technology, 2009, 82(5): 524-540. |
48 | Kruželák J, Sýkora R, Hudec I. Peroxide vulcanization of natural rubber(Ⅰ): Effect of temperature and peroxide concentration[J]. Journal of Polymer Engineering, 2014, 34(7): 617-624. |
49 | 丛明辉, 吕丹丹, 林科, 等. 硫化温度及硫化程度对全钢载重子午线轮胎胎面胶性能的影响[J]. 轮胎工业, 2020, 40(10): 618-621. |
Cong M H, Lyu D D, Lin K, et al. Effects of curing temperature and degree on properties of tread compound of TBR tire[J]. Tire Industry, 2020, 40(10): 618-621. | |
50 | Zhang X P, Cai L, Wang C W, et al. Effect of room-temperature annealing on structures and properties of SSBR/BR blends and SSBR/BR/SiO2 composites[J]. Composites Science and Technology, 2019, 184: 107835. |
51 | Surya I, Ismail H, Azura A R. The comparison of alkanolamide and silane coupling agent on the properties of silica-filled natural rubber (SMR-L) compounds[J]. Polymer Testing, 2014, 40: 24-32. |
52 | Anas K, David S, Babu R R, et al. Energy dissipation characteristics of crosslinks in natural rubber: an assessment using low and high-frequency analyzer[J]. Journal of Polymer Engineering, 2018, 38(8): 723-729. |
53 | Zhang J W, Lu J M, Su K, et al. Bio-based β-myrcene-modified solution-polymerized styrene-butadiene rubber for improving carbon black dispersion and wet skid resistance[J]. Journal of Applied Polymer Science, 2019, 136(45): 48159. |
54 | Han J J, Zhang X L, Guo W H, et al. Effect of modified carbon black on the filler-elastomer interaction and dynamic mechanical properties of SBR vulcanizates[J]. Journal of Applied Polymer Science, 2006, 100(5): 3707-3712. |
55 | 杜金艳. CdTe纳米结构零维/一维间的快速转化及荧光偏振传感研究[D]. 芜湖: 安徽师范大学, 2014. |
Du J Y. Investigation toward 0D/1D fast transformation of CdTe nanostructures and fluorescence polarization sensing[D]. Wuhu: Anhui Normal University, 2014. | |
56 | 李芬. 碳纳米管橡胶纳米复合材料制备与性能[D]. 北京: 北京化工大学, 2012. |
Li F. The preparation and property of carbon nanotubes/elastomeric composites[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
57 | Dong B, Liu C, Lu Y L, et al. Synergistic effects of carbon nanotubes and carbon black on the fracture and fatigue resistance of natural rubber composites[J]. Journal of Applied Polymer Science, 2015, 132(25): 42075. |
58 | 刘福瑞, 李建, 孙翀, 等. 停放时间对白炭黑/碳纳米管填充并用胶挤出流变性能的影响[J]. 青岛科技大学学报(自然科学版), 2018, 39(6): 77-81. |
Liu F R, Li J, Sun C, et al. Effect of storage time on extrusion rheological properties of silica/CNT filled compounds[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2018, 39(6): 77-81. | |
59 | 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391. |
Bai J J, Su H B, Liu Z W. Preparation and rheological properties of isocyanate functionalized carbon nanotubes/thermoplastic polyurethane elastomer composites[J]. Materials Review, 2018, 32(24): 4386-4391. | |
60 | Lu Y L, Li J C, Yu H T, et al. Plasma induced surface coating on carbon nanotube bundles to fabricate natural rubber nanocomposites[J]. Polymer Testing, 2018, 65: 21-28. |
61 | 罗芳. 纳米填料对交替多层硅橡胶结构及性能的影响[D]. 成都: 成都理工大学, 2019. |
Luo F. The influence of nano-fillers on the structure and properties of alternating multilayered silicone rubber[D]. Chengdu: Chengdu University of Technology, 2019. | |
62 | 陈利水, 夏季, 陈国梁, 等. 石墨烯/氧化锌复合填充剂对天然胶乳及其制品性能的影响[J]. 合成橡胶工业, 2018, 41(4): 304-308. |
Chen L S, Xia J, Chen G L, et al. Effect of graphene/zinc oxide complex filler on properties of natural rubber latex and its products[J]. China Synthetic Rubber Industry, 2018, 41(4): 304-308. | |
63 | Zhong B C, Dong H H, Luo Y F, et al. Simultaneous reduction and functionalization of graphene oxide via antioxidant for highly aging resistant and thermal conductive elastomer composites[J]. Composites Science and Technology, 2017, 151: 156-163. |
64 | Zheng Z, Shen J, Liu J, et al. Turing the viscoelasticity of elastomeric polymer materials via flexible nanoparticles: insights from molecular dynamics simulation[J]. RSC Advances, 2016, 6(34): 28666-28678. |
65 | Liu J, Lu Y L, Tian M, et al. The interesting influence of nanosprings on the viscoelasticity of elastomeric polymer materials: simulation and experiment[J]. Advanced Functional Materials, 2013, 23(9): 1156-1163. |
66 | 时金凤, 李建, 孙翀, 等. 乳聚丁苯橡胶/白炭黑/偶联剂体系挤出流变特性的研究[J]. 橡胶工业, 2018, 65(7): 731-736. |
Shi J F, Li J, Sun C, et al. Investigation on rheological properties of SBR/silica/silane compound during extrusion[J]. China Rubber Industry, 2018, 65(7): 731-736. | |
67 | 邵亚诗. 原位改性纳米级白炭黑填充NR性能及其低滚阻机理分析[D]. 青岛: 青岛科技大学, 2019. |
Shao Y S. Analysis properties and low rolling resistance mechanism of NR filled by in situ modified nano-scale silica[D]. Qingdao: Qingdao University of Science & Technology, 2019. | |
68 | 任卫国. 超(亚)临界水热活化煤矸石制备白炭黑及其表面改性的研究[D]. 太原: 太原理工大学, 2019. |
Ren W G. Study on the preparation of silicon from coal gangue activated by supercritical (subcritical) hydrothermal and its surface modification[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
69 | Rauline R. Copolymer rubber composition with silica filler, tires having a base of said composition and method of preparing same: US5227425[P]. 1993-07-13. |
70 | Li Y, Han B Y, Wen S P, et al. Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites[J]. Composites Part A: Applied Science and Manufacturing, 2014, 62: 52-59. |
71 | Zheng J C, Han D L, Zhao S H, et al. Constructing a multiple covalent interface and isolating a dispersed structure in silica/rubber nanocomposites with excellent dynamic performance[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19922-19931. |
72 | 姚彬彬, 阚泽. 天然虾青素改性白炭黑/天然橡胶复合材料的制备与性能[J]. 化工进展, 2019, 38(4): 1872-1878. |
Yao B B, Kan Z. Preparation and properties of natural astaxanthin modified silica/natural rubber composites[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1872-1878. | |
73 | Fang Q H, Song B, Tee T T, et al. Investigation of dynamic characteristics of nano-size calcium carbonate added in natural rubber vulcanizate[J]. Composites Part B: Engineering, 2014, 60: 561-567. |
74 | D'Arienzo M, Redaelli M, Callone E, et al. Hybrid SiO2@POSS nanofiller: a promising reinforcing system for rubber nanocomposites[J]. Materials Chemistry Frontiers, 2017, 1(7): 1441-1452. |
75 | Setua D K, Shukla M K, Nigam V, et al. Lignin reinforced rubber composites[J]. Polymer Composites, 2000, 21(6): 988-995. |
76 | 沈佩瑶, 梁小容, 李彩新, 等. 碱法制备蔗渣纳米纤维素/丁苯橡胶复合材料性能[J]. 化工学报, 2018, 69(6): 2759-2766. |
Shen P Y, Liang X R, Li C X, et al. Properties of bagasse nano-cellulose by alkaline hydrolysis/styrene butadiene rubber composite[J]. CIESC Journal, 2018, 69(6): 2759-2766. | |
77 | 迟书恒. 碳化硼改性氟橡胶复合材料制备及性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. |
Chi S H. Study on the preparation and properties of boron carbide modified fluoroelastomer composite material[D]. Harbin: Harbin Engineering University, 2013. | |
78 | Weng G S, Huang G S, Qu L L, et al. Natural rubber with low heat generation achieved by the inclusion of boron carbide[J]. Journal of Applied Polymer Science, 2010, 118(4): 2050-2055. |
79 | Fang Q H, Liu X C, Wang N, et al. The effect of zeolite particle modified by PEG on rubber composite properties[J]. Science and Engineering of Composite Materials, 2015, 22(6): 607-612. |
80 | Tang Z H, Zhang C F, Wei Q Y, et al. Remarkably improving performance of carbon black-filled rubber composites by incorporating MoS2 nanoplatelets[J]. Composites Science and Technology, 2016, 132: 93-100. |
81 | Kim K J, VanderKooi J. Effects of zinc ion containing surfactant on bifunctional silane treated silica compounds in natural rubber[J]. Journal of Industrial and Engineering Chemistry, 2002, 8(4): 334-347. |
82 | 王哲鹏. 离子液体对白炭黑填充天然橡胶性能的影响[D]. 青岛: 青岛科技大学, 2019. |
Wang Z P. Effect of ionic liquid on properties of natural rubber filled with silica[D]. Qingdao: Qingdao University of Science & Technology, 2019. | |
83 | Kundu P P. Improvement of filler-rubber interaction by the coupling action of vegetable oil in carbon black reinforced rubber[J]. Journal of Applied Polymer Science, 2000, 75(6): 735-739. |
84 | Xing W, Tang M Z, Wu J R, et al. Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method[J]. Composites Science and Technology, 2014, 99: 67-74. |
85 | Wang M J. New developments in carbon black dispersion[J]. Kgk-kautschuk Gummi Kunststoffe, 2005, 58(12): 626-637. |
86 | 张奇峰. 液相混炼溶聚丁苯/白炭黑母胶小试技术研究[D]. 北京: 北京化工大学, 2017. |
Zhang Q F. The design, preparation and lab scale application study of S-SBR/silica master batch by solution compounding[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
87 | 徐云慧, 孙飞, 孙鹏, 等. 混炼工艺对NR/SBR/BR/TRR农业轮胎胎面胶性能的影响[J]. 橡胶科技, 2017, 15(2): 43-47. |
Xu Y H, Sun F, Sun P, et al. Effect of mixing process on properties of NR/SBR/BR/TRR agriculture tire tread[J]. Rubber Science and Technology, 2017, 15(2): 43-47. | |
88 | Lightsey J W, Kneiling D J, Long J M. Silica wet masterbatch: a new process for pre-dispersion of silica in emulsion polymers[J]. Rubber World, 1998, 218(3): 35-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||